Skip to contents

Measurements made on Egyptian skulls from five epochs.

Format

A data frame with 150 observations on the following 5 variables.

epoch

the epoch the skull as assigned to, an ordered factor with levels c4000BC c3300BC, c1850BC, c200BC, and cAD150, where the years are only given approximately, of course.

mb

maximal breadth of the skull.

bh

basibregmatic height of the skull.

bl

basialiveolar length of the skull.

nh

nasal height of the skull.

Source

D. J. Hand, F. Daly, A. D. Lunn, K. J. McConway and E. Ostrowski (1994). A Handbook of Small Datasets, Chapman and Hall/CRC, London.

Details

The epochs correspond to the following periods of Egyptian history:

  1. the early predynastic period (circa 4000 BC);

  2. the late predynastic period (circa 3300 BC);

  3. the 12th and 13th dynasties (circa 1850 BC);

  4. the Ptolemiac period (circa 200 BC);

  5. the Roman period (circa 150 AD).

The question is whether the measurements change over time. Non-constant measurements of the skulls over time would indicate interbreeding with immigrant populations.

Note that using polynomial contrasts for epoch essentially treats the time points as equally spaced.

References

Thomson, A. and Randall-Maciver, R. (1905) Ancient Races of the Thebaid, Oxford: Oxford University Press.

Hand, D. J., F. Daly, A. D. Lunn, K. J. McConway and E. Ostrowski (1994). A Handbook of Small Datasets, Chapman and Hall/CRC, London.

Examples


data(Skulls)
library(car)    # for Anova

# make shorter labels for epochs
Skulls$epoch <- factor(Skulls$epoch, labels=sub("c","",levels(Skulls$epoch)))

# longer variable labels
vlab <- c("maxBreadth", "basibHeight", "basialLength", "nasalHeight")

# fit manova model
sk.mod <- lm(cbind(mb, bh, bl, nh) ~ epoch, data=Skulls)

Anova(sk.mod)
#> 
#> Type II MANOVA Tests: Pillai test statistic
#>       Df test stat approx F num Df den Df    Pr(>F)    
#> epoch  4   0.35331    3.512     16    580 4.675e-06 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(Anova(sk.mod))
#> 
#> Type II MANOVA Tests:
#> 
#> Sum of squares and products for error:
#>             mb          bh         bl        nh
#> mb 3061.066667    5.333333   11.46667  291.3000
#> bh    5.333333 3405.266667  754.00000  412.5333
#> bl   11.466667  754.000000 3505.96667  164.3333
#> nh  291.300000  412.533333  164.33333 1472.1333
#> 
#> ------------------------------------------
#>  
#> Term: epoch 
#> 
#> Sum of squares and products for the hypothesis:
#>           mb         bh        bl         nh
#> mb  502.8267 -228.14667 -626.6267  135.43333
#> bh -228.1467  229.90667  292.2800  -66.06667
#> bl -626.6267  292.28000  803.2933 -180.73333
#> nh  135.4333  -66.06667 -180.7333   61.20000
#> 
#> Multivariate Tests: epoch
#>                  Df test stat  approx F num Df   den Df     Pr(>F)    
#> Pillai            4 0.3533056  3.512037     16 580.0000 4.6753e-06 ***
#> Wilks             4 0.6635858  3.900928     16 434.4548 7.0102e-07 ***
#> Hotelling-Lawley  4 0.4818191  4.230974     16 562.0000 8.2782e-08 ***
#> Roy               4 0.4250954 15.409707      4 145.0000 1.5883e-10 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# test trends over epochs
print(linearHypothesis(sk.mod, "epoch.L"), SSP=FALSE) # linear component
#> 
#> Multivariate Tests: 
#>                  Df test stat approx F num Df den Df     Pr(>F)    
#> Pillai            1 0.2913791 14.59731      4    142 5.1953e-10 ***
#> Wilks             1 0.7086209 14.59731      4    142 5.1953e-10 ***
#> Hotelling-Lawley  1 0.4111918 14.59731      4    142 5.1953e-10 ***
#> Roy               1 0.4111918 14.59731      4    142 5.1953e-10 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(linearHypothesis(sk.mod, "epoch.Q"), SSP=FALSE) # quadratic component
#> 
#> Multivariate Tests: 
#>                  Df test stat  approx F num Df den Df  Pr(>F)
#> Pillai            1 0.0183468 0.6634844      4    142 0.61837
#> Wilks             1 0.9816532 0.6634844      4    142 0.61837
#> Hotelling-Lawley  1 0.0186897 0.6634844      4    142 0.61837
#> Roy               1 0.0186897 0.6634844      4    142 0.61837

# typical scatterplots are not very informative
scatterplot(mb ~ bh|epoch, data=Skulls, 
            ellipse = list(levels=0.68), 
            smooth=FALSE, 
            legend = list(coords="topright"),
            xlab=vlab[2], ylab=vlab[1])


scatterplot(mb ~ bl|epoch, data=Skulls, 
            ellipse = list(levels=0.68), 
            smooth=FALSE, 
            legend = list(coords="topright"),
            xlab=vlab[3], ylab=vlab[1])


# HE plots

heplot(sk.mod, 
       hypotheses=list(Lin="epoch.L", Quad="epoch.Q"), 
       xlab=vlab[1], ylab=vlab[2])


pairs(sk.mod, 
      hypotheses=list(Lin="epoch.L", Quad="epoch.Q"), 
      var.labels=vlab)


# 3D plot shows that nearly all of hypothesis variation is linear!
if (FALSE) { # \dontrun{
heplot3d(sk.mod, hypotheses=list(Lin="epoch.L", Quad="epoch.Q"), col=c("pink", "blue"))

# view in canonical space
if (require(candisc)) {
  sk.can <- candisc(sk.mod)
  sk.can
  heplot(sk.can)
  heplot3d(sk.can)
}
} # }