This document provides a reference guide to R functions for
statistical tests, models, and visualization methods used in Psy 6136:
Categorical Data Analysis.
Organization: Topics follow the course sequence.
Each section covers:
- Statistical tests and models
- R functions and packages
- Visualization methods
Note:
This web page is a work-in-progress, in the hope that it can be
generally useful as a guide to finding the R tools useful for
categorical data analysis. If you find something that is confusing, or
could be replaced by something better or more recent, please let me know by
filing an issue.
Jump to: Discrete
Distributions || Two-Way Tables || Loglinear Models || Correspondence Analysis || Logistic Regression || Polytomous Models || Extended
Loglinear || Count Data GLMs || Visualization Tools || Packages || Quick
Reference
1. Discrete Distributions
Fitting Distributions
| Goodness-of-fit test |
chisq.test() |
stats |
Chi-square test for discrete distributions |
| Goodness-of-fit test |
goodfit() |
vcd |
Fit and test discrete distributions (Poisson, binomial, negative
binomial) |
| Maximum likelihood |
fitdistr() |
MASS |
ML fitting for various distributions |
| Distribution fitting |
fitdist() |
fitdistrplus |
Comprehensive fitting with multiple methods |
| Monte Carlo GOF |
chisq_test() |
discretefit |
Fast MC simulations for GOF tests |
Distribution Functions
| Binomial |
dbinom(), pbinom(), qbinom(),
rbinom() |
stats |
| Poisson |
dpois(), ppois(), qpois(),
rpois() |
stats |
| Negative Binomial |
dnbinom(), pnbinom(),
qnbinom(), rnbinom() |
stats |
| Geometric |
dgeom(), pgeom(), qgeom(),
rgeom() |
stats |
Visualization
| Rootogram |
rootogram() |
vcd |
Compare observed vs fitted frequencies |
| Ord plot |
Ord_plot() |
vcd |
Diagnose distribution type |
| Distplot |
distplot() |
vcd |
Diagnostic plot for count distributions |
| Hanging rootogram |
rootogram(..., type="hanging") |
vcd |
Deviations hang from fitted curve |
Example:
library(vcd)
data(HorseKicks)
gf <- goodfit(HorseKicks, type = "poisson")
summary(gf) # GOF test
rootogram(gf) # Visual comparison
Ord_plot(HorseKicks) # Distribution diagnosis
2. Two-Way Contingency Tables
Tests of Independence
| Pearson chi-square |
chisq.test() |
stats |
Test of independence |
| Likelihood ratio |
loglm() |
MASS |
G² test via loglinear model |
| Fisher exact test |
fisher.test() |
stats |
Exact test for small samples |
| Cochran-Mantel-Haenszel |
mantelhaen.test() |
stats |
Stratified 2×2 tables |
| CMH tests |
CMHtest() |
vcdExtra |
Extended CMH tests for ordinal data |
| Woolf test |
woolf_test() |
vcd |
Test homogeneity of odds ratios |
Measures of Association
| Odds ratio |
oddsratio() |
vcd |
Odds ratio with CI |
| Odds ratio |
OddsRatio() |
DescTools |
Alternative implementation |
| Relative risk |
relrisk() |
vcd |
Relative risk for 2×2 tables |
| Cramer’s V |
assocstats() |
vcd |
Returns V, phi, contingency coef |
| Cohen’s kappa |
Kappa() |
vcd |
Inter-rater agreement |
| Cohen’s kappa |
cohen.kappa() |
psych |
With weighted options |
| Bangdiwala’s B |
Bangdiwala() |
vcdExtra |
Observer agreement measure |
| Gamma |
GoodmanKruskalGamma() |
DescTools |
Ordinal association |
| Kendall’s tau-b |
KendallTauB() |
DescTools |
Ordinal association |
| Uncertainty coefficient |
assocstats() |
vcd |
Included in output |
Visualization
| Fourfold display |
fourfold() |
vcd |
Visualize 2×2 tables, odds ratios |
| Sieve diagram |
sieve() |
vcd |
Visualize deviations from independence |
| Association plot |
assoc() |
vcd |
Pearson residuals as rectangles |
| Spine plot |
spine() |
vcd |
Conditional proportions |
| Spine plot |
spineplot() |
graphics |
Base R version |
| Mosaic plot |
mosaic() |
vcd |
Multi-way tables (see Section 3) |
| Doubledecker |
doubledecker() |
vcd |
Highlight one response variable |
| Agreement plot |
agreementplot() |
vcd |
Visualize observer agreement |
| Bangdiwala plot |
Bangdiwala() |
vcdExtra |
Agreement visualization |
Example:
library(vcd)
data(UCBAdmissions)
ucb <- margin.table(UCBAdmissions, c(1,2))
# Tests
chisq.test(ucb)
assocstats(ucb)
# Visualization
fourfold(UCBAdmissions)
sieve(ucb, shade = TRUE)
assoc(ucb, shade = TRUE)
3. Loglinear Models
Model Fitting
| Loglinear model |
loglm() |
MASS |
Fit loglinear models (uses formula with ~) |
| GLM approach |
glm(..., family=poisson) |
stats |
Loglinear via GLM framework |
| Model comparison |
anova() |
stats |
Compare nested models |
| LR test |
LRtest() |
vcdExtra |
Likelihood ratio tests |
| Model summary |
mosaic.glm() |
vcdExtra |
Mosaic for glm objects |
Model Notation
# Independence: [A][B]
loglm(~ A + B, data = tab)
# Joint independence: [AB][C]
loglm(~ A*B + C, data = tab)
# Conditional independence: [AC][BC]
loglm(~ A*C + B*C, data = tab)
# Homogeneous association: [AB][AC][BC]
loglm(~ A*B + A*C + B*C, data = tab)
# Saturated: [ABC]
loglm(~ A*B*C, data = tab)
Visualization
| Mosaic display |
mosaic() |
vcd |
Visualize loglinear model fit |
| Mosaic (formula) |
mosaic(~ A + B + C) |
vcd |
Using formula interface |
| Mosaic (glm) |
mosaic.glm() |
vcdExtra |
Mosaic for fitted glm |
| Strucplot |
strucplot() |
vcd |
General structure plot |
| ggplot mosaic |
geom_mosaic() |
ggmosaic |
ggplot2 implementation |
Residuals and Shading
# Mosaic with model residuals
mosaic(~ Admit + Gender + Dept, data = UCBAdmissions,
shade = TRUE, # Color by residuals
expected = ~ Gender * Dept + Admit * Dept, # Model to test
legend = TRUE)
# Shading schemes
mosaic(..., gp = shading_hcl) # HCL color shading
mosaic(..., gp = shading_Friendly) # Friendly scheme
mosaic(..., gp = shading_max) # Maximum shading
Example:
library(vcd)
library(MASS)
data(Titanic)
# Fit loglinear model
mod <- loglm(~ Class * Age * Sex + Survived * (Class + Age + Sex),
data = Titanic)
summary(mod)
# Visualize
mosaic(Titanic, shade = TRUE,
expected = ~ Class * Age * Sex + Survived * (Class + Age + Sex))
4. Correspondence Analysis
Simple Correspondence Analysis (CA)
| CA |
ca() |
ca |
Correspondence analysis |
| CA |
CA() |
FactoMineR |
Alternative with more output |
| CA |
corresp() |
MASS |
Simple CA |
| Summary |
summary.ca() |
ca |
Detailed CA summary |
| Scores |
cacoord() |
ca |
Extract coordinates |
Multiple Correspondence Analysis (MCA)
| MCA |
mjca() |
ca |
Multiple/joint CA |
| MCA |
MCA() |
FactoMineR |
MCA with graphics |
Visualization
| CA biplot |
plot.ca() |
ca |
Symmetric or asymmetric maps |
| CA map |
fviz_ca_biplot() |
factoextra |
ggplot2-based CA plot |
| Row plot |
fviz_ca_row() |
factoextra |
Plot row points |
| Column plot |
fviz_ca_col() |
factoextra |
Plot column points |
| Eigenvalues |
fviz_screeplot() |
factoextra |
Scree plot of dimensions |
| Contributions |
fviz_contrib() |
factoextra |
Variable contributions |
Example:
library(ca)
data(smoke)
smoke.ca <- ca(smoke)
summary(smoke.ca)
# Plots
plot(smoke.ca) # Standard biplot
plot(smoke.ca, map = "rowprincipal") # Asymmetric
library(factoextra)
fviz_ca_biplot(smoke.ca, repel = TRUE)
5. Logistic Regression
Model Fitting
| Logistic regression |
glm(..., family=binomial) |
stats |
Binary logistic regression |
| Probit regression |
glm(..., family=binomial(link="probit")) |
stats |
Probit link |
| Coefficients |
coef(), summary() |
stats |
Model coefficients |
| Odds ratios |
exp(coef()) |
stats |
Exponentiate for OR |
| Confidence intervals |
confint() |
stats |
Profile likelihood CI |
| Wald CI |
confint.default() |
stats |
Wald-based CI |
Model Comparison and Testing
| Likelihood ratio test |
anova(..., test="Chisq") |
stats |
Compare nested models |
| Wald test |
Anova() |
car |
Type II/III tests |
| Hosmer-Lemeshow |
hoslem.test() |
ResourceSelection |
GOF test |
| ROC/AUC |
roc(), auc() |
pROC |
Model discrimination |
Effect Displays
| All effects |
allEffects() |
effects |
Compute all effects |
| Effect plot |
plot(allEffects()) |
effects |
Plot effects |
| Specific effect |
Effect() |
effects |
One predictor effect |
| Marginal effects |
ggpredict() |
ggeffects |
Marginal means/predictions |
| Marginal effects |
ggeffect() |
ggeffects |
Average marginal effects |
| Margins |
margins() |
margins |
Marginal effects (Stata-like) |
Visualization
| Effect plot |
plot(Effect()) |
effects |
Predicted probabilities |
| Coefficient plot |
plot_model(..., type="est") |
sjPlot |
Forest plot of ORs |
| Predicted probs |
plot_model(..., type="pred") |
sjPlot |
Predicted probabilities |
| Marginal effects |
plot(ggpredict()) |
ggeffects |
ggplot2 marginal effects |
| Component+residual |
crPlots() |
car |
Partial residual plots |
| Influence plot |
influencePlot() |
car |
Influence diagnostics |
| Residual plots |
residualPlots() |
car |
Various residual plots |
Diagnostics
| Deviance residuals |
residuals(..., type="deviance") |
stats |
Deviance residuals |
| Pearson residuals |
residuals(..., type="pearson") |
stats |
Pearson residuals |
| Hat values |
hatvalues() |
stats |
Leverage |
| Cook’s distance |
cooks.distance() |
stats |
Influence measure |
| DFBETAS |
dfbetas() |
stats |
Coefficient influence |
| VIF |
vif() |
car |
Multicollinearity |
Example:
library(effects)
library(car)
# Fit model
data(Arthritis, package = "vcd")
arth.glm <- glm(Improved ~ Treatment + Sex + Age,
data = Arthritis, family = binomial)
# Summary with odds ratios
exp(cbind(OR = coef(arth.glm), confint(arth.glm)))
# Effect plots
plot(allEffects(arth.glm))
# Diagnostics
influencePlot(arth.glm)
vif(arth.glm)
6. Polytomous Response Models
Ordinal Response (Proportional Odds)
| Proportional odds |
polr() |
MASS |
Cumulative logit model |
| Ordinal regression |
clm() |
ordinal |
Cumulative link models |
| Ordinal regression |
vglm(..., cumulative()) |
VGAM |
Flexible ordinal models |
| Test prop. odds |
poTest() |
car |
Test proportional odds |
| Partial prop. odds |
clm2() |
ordinal |
Relaxed proportional odds |
Multinomial Response
| Multinomial logit |
multinom() |
nnet |
Unordered categories |
| Multinomial logit |
vglm(..., multinomial()) |
VGAM |
Alternative implementation |
| Baseline-category |
vglm(..., multinomial(refLevel=1)) |
VGAM |
Specify reference |
Nested Dichotomies
| Nested logit |
nestedLogit() |
nestedLogit |
Fit nested dichotomies |
| Dichotomies |
dichotomy() |
nestedLogit |
Define dichotomies |
| Continue |
continueLast() |
nestedLogit |
Continue previous split |
Visualization
| Effect plot (polr) |
plot(Effect()) |
effects |
Works with polr objects |
| Effect plot (multinom) |
plot(Effect()) |
effects |
Works with multinom |
| Nested logit plot |
plot() |
nestedLogit |
Plot nested model |
| ggplot nested |
ggeffects::ggpredict() |
ggeffects |
For nested models |
Example:
# Proportional odds
library(MASS)
data(housing, package = "MASS")
house.polr <- polr(Sat ~ Infl + Type + Cont, data = housing, weights = Freq)
summary(house.polr)
# Effects
library(effects)
plot(Effect("Infl", house.polr))
# Multinomial
library(nnet)
house.multi <- multinom(Sat ~ Infl + Type + Cont, data = housing, weights = Freq)
7. Extended Loglinear Models
Models for Ordinal Data
| Linear-by-linear |
glm() with scores |
stats |
Assign numeric scores |
| RC association |
rc() |
logmult |
Row-column association |
| RC(M) models |
rc(..., nd=M) |
logmult |
M-dimensional RC |
| Uniform association |
Create contrast in glm() |
stats |
Single association param |
Generalized Nonlinear Models (gnm)
| GNM |
gnm() |
gnm |
Generalized nonlinear models |
| Multiplicative |
Mult() |
gnm |
Multiplicative interaction |
| Homogeneous mult. |
MultHomog() |
gnm |
Same scores for rows/cols |
| Diagonal |
Diag() |
gnm |
Diagonal parameters |
| Diagonal reference |
Dref() |
gnm |
Diagonal reference model |
Models for Square Tables
| Independence |
glm(~ R + C) |
stats |
| Quasi-independence |
glm(~ R + C + Diag(R,C)) |
gnm |
| Symmetry |
glm() with symmetry coding |
stats |
| Quasi-symmetry |
glm(~ R + C + Symm(R,C)) |
gnm |
| Marginal homogeneity |
Test via quasi-symmetry |
- |
Visualization
| Mosaic |
mosaic() |
vcd |
With expected model |
| RC plot |
plot.rc() |
logmult |
Plot RC scores |
| Score plot |
Custom with ggplot2 |
- |
Plot estimated scores |
Example:
library(gnm)
library(vcdExtra)
data(Yamaguchi87)
# Quasi-independence
quasi.indep <- gnm(Freq ~ origin + destination + Diag(origin, destination),
family = poisson, data = Yamaguchi87)
# Quasi-symmetry
quasi.symm <- gnm(Freq ~ origin + destination + Symm(origin, destination),
family = poisson, data = Yamaguchi87)
# RC association model
library(logmult)
rc1 <- rc(Yamaguchi87, nd = 1, weighting = "marginal")
plot(rc1)
8. GLMs for Count Data
Basic Count Models
| Poisson |
glm(..., family=poisson) |
stats |
Standard count model |
| Quasi-Poisson |
glm(..., family=quasipoisson) |
stats |
Handles overdispersion |
| Negative binomial |
glm.nb() |
MASS |
Overdispersed counts |
| Negative binomial |
glm(..., family=negative.binomial()) |
MASS |
Alternative syntax |
Zero-Inflated Models
| Zero-inflated Poisson |
zeroinfl(..., dist="poisson") |
pscl |
ZIP model |
| Zero-inflated NB |
zeroinfl(..., dist="negbin") |
pscl |
ZINB model |
| Hurdle Poisson |
hurdle(..., dist="poisson") |
pscl |
Hurdle model |
| Hurdle NB |
hurdle(..., dist="negbin") |
pscl |
NB hurdle |
Model Selection and Comparison
| AIC |
AIC() |
stats |
Akaike IC |
| BIC |
BIC() |
stats |
Bayesian IC |
| Vuong test |
vuong() |
pscl |
Compare non-nested models |
| LR test |
lrtest() |
lmtest |
Likelihood ratio test |
| Dispersion test |
dispersiontest() |
AER |
Test for overdispersion |
Diagnostics
| Deviance/df |
sum(residuals(m, type="deviance")^2)/df |
stats |
Overdispersion check |
| Rootogram |
rootogram() |
countreg, vcd |
Observed vs fitted |
| Residual plot |
residualPlots() |
car |
Multiple residual plots |
| Influence |
influencePlot() |
car |
Influence diagnostics |
Visualization
| Rootogram |
rootogram() |
countreg |
Compare observed/expected |
| Effect plot |
plot(allEffects()) |
effects |
Predicted counts |
| Coefficient plot |
coefplot() |
arm |
Plot coefficients |
| Predicted counts |
ggpredict() |
ggeffects |
Marginal predictions |
Example:
library(MASS)
library(pscl)
# Poisson
pois.mod <- glm(art ~ fem + mar + kid5 + phd + ment,
family = poisson, data = bioChemists)
# Check overdispersion
sum(residuals(pois.mod, type = "pearson")^2) / pois.mod$df.residual
# Negative binomial
nb.mod <- glm.nb(art ~ fem + mar + kid5 + phd + ment, data = bioChemists)
# Zero-inflated
zip.mod <- zeroinfl(art ~ fem + mar + kid5 + phd + ment | ment,
data = bioChemists)
# Compare
AIC(pois.mod, nb.mod)
vuong(pois.mod, zip.mod)
9. General Visualization Tools
vcd Package Core Functions
mosaic() |
Mosaic displays for n-way tables |
assoc() |
Association plots |
sieve() |
Sieve diagrams |
fourfold() |
Fourfold displays for 2×2×k |
spine() |
Spineplots |
doubledecker() |
Doubledecker plots |
strucplot() |
General structure plots |
cotabplot() |
Conditioning plots for tables |
pairs.table() |
Pairs plot for multi-way tables |
labeling_border() |
Labeling for strucplots |
shading_hcl() |
HCL-based shading |
ggplot2 Extensions
| ggmosaic |
geom_mosaic() |
Mosaic in ggplot2 |
| ggstats |
ggcoef_model() |
Coefficient plots |
| sjPlot |
plot_model() |
Model visualization |
| ggeffects |
ggpredict(), plot() |
Effect displays |
| GGally |
ggpairs() |
Pairs plots |
| ggalluvial |
geom_alluvium() |
Alluvial diagrams |
Model-Agnostic Visualization
| effects |
Effect displays for many model types |
| ggeffects |
ggplot2-based marginal effects |
| margins |
Stata-style marginal effects |
| sjPlot |
Publication-ready model tables and plots |
| broom |
Tidy model outputs for plotting |
Package Installation
# Core packages
install.packages(c("vcd", "vcdExtra", "MASS", "ca"))
# Extended modeling
install.packages(c("gnm", "logmult", "nnet", "ordinal", "VGAM", "pscl"))
# Visualization
install.packages(c("effects", "ggeffects", "sjPlot", "ggmosaic", "factoextra"))
# Diagnostics
install.packages(c("car", "lmtest", "ResourceSelection", "pROC"))
# Utilities
install.packages(c("DescTools", "broom", "psych"))
# From GitHub
# install.packages("remotes")
# remotes::install_github("friendly/nestedLogit")
# remotes::install_github("friendly/vcdExtra")
Quick Reference by Analysis Goal
| Fit discrete distribution |
Goodness-of-fit |
goodfit(), rootogram() |
| Test independence (2-way) |
Chi-square, Fisher |
chisq.test(), assocstats() |
| Measure association |
OR, RR, V, kappa |
oddsratio(), Kappa() |
| Visualize 2-way table |
Mosaic, sieve, fourfold |
mosaic(), sieve(),
fourfold() |
| Fit loglinear model |
Poisson GLM |
loglm(), glm(family=poisson) |
| Explore CA structure |
Correspondence analysis |
ca(), plot.ca() |
| Binary outcome |
Logistic regression |
glm(family=binomial) |
| Ordinal outcome |
Proportional odds |
polr(), clm() |
| Nominal outcome |
Multinomial logit |
multinom() |
| Count outcome |
Poisson/NB |
glm(), glm.nb() |
| Excess zeros |
ZIP, Hurdle |
zeroinfl(), hurdle() |
| Model effects |
Effect displays |
allEffects(), ggpredict() |
| Model comparison |
LR test, AIC |
anova(), AIC() |
Last updated: January 2026
Copyright © 2018 Michael Friendly. All rights reserved. ||
lastModified :
friendly AT yorku DOT ca
orcid.org/0000-0002-3237-0941