| Week | Topic | Readings | |
|---|---|---|---|
| 1 | Overview [slides] 
                        [4up] [Working with R Studio] [4up] [intro-to-R.Rmd]  | 
    DDAR: 
    Ch1,
    Ch2;  Agresti: Ch1  | 
	
		R-into.R [ | 
  
| 2 | Discrete distributions [slides] [4up] | DDAR: Ch3 | 
		R-data.R 
	    [ binomial.R [  | 
  
| 3 | Two-Way Tables: Independence & Association [slides] [4up] | DDAR: 
    Ch4;  Agresti: Ch2  | 
		
				 berk-4fold.R
				[ vision-sieve.R [  | 
  
| 4 | Two-Way Tables: Ordinal Data and Dependent Samples [Tutorial] on two-way tables  | 
              
    DDAR: 
    Ch4;  Agresti: Ch2  | 
		
				 msdiag-agree.R
				[ haireye-spineplot.R [  | 
  
| 5 | Loglinear Models and Mosaic Displays 
                      [slides] 
                      [4up] [Tutorial] on loglin models; [Mosaic display animation]  | 
    DDAR: 
    Ch5;  Agresti: 2.7, Ch. 7  | 
		
				 berkeley-glm.R
				[ titanic-loglin.R [  | 
  
| 6 | Correspondence Analysis 
                        [slides] 
                        [4up]  [Tutorial] on CA;  | 
    DDAR: Ch6 | 
				 mental-ca.R
				[ mca-presex3.R [  | 
  
| 7 | Logistic Regression I 
                       [slides] 
                       [4up] [Logistic regression tutorial]  | 
    DDAR: 
    7.1-7.3;  Agresti: 3.1-3.2; Ch 4  | 
    
		
				 arthritis-logistic.R
				[ cowles-logistic.R [ Arrests-logistic.R [  | 
  
| 8 | Logistic Regression II [slides] [4up] | DDAR: 
    7.3-7.4;  Agresti: Ch 4-5  | 
		
				 cowles-effect.R
				[ Arrests-effects.R [ berkeley-diag.R [  | 
  
| 9 | Multinomial Logistic Regression [slides] [4up] | DDAR: 
    8.2-8.3;  Agresti: Ch 6  | 
		
				 arthritis-propodds.R
				[ wlf-nested.R [ wlf-glogit.R [  | 
  
| 10 | Log-Linear Models I [slides] [4up] | DDAR: 
    9.1-9.4;  Agresti: Ch 7  | 
		
				 berkely-logit.R	
				[ | 
  
| 11 | Log-Linear Models II 
                  [slides] 
                  [4up] [Ordinal factors tutorial]  | 
    DDAR: 
    Ch 10;  Agresti: Ch 8  | 
		
				 mental-glm.R	
				[ | 
  
| 12 | Generalized Linear Models: Count Data
                       [slides] 
                       [4up]  [Count data GLMs tutorial]  | 
    DDAR: 
    Ch 11;  Agresti 3.3-3.5  | 
		
				 phdpubs.R
				[ quine.R [  | 
| 13 | Generalized Linear Models: Further topics [slides] [4up] | CARME2015: slides | 
		   hospvisits-logodds.R
		  [ |