This function is a convenience wrapper to mahalanobis
offering also the possibility to calculate robust Mahalanobis squared
distances using MCD and MVE estimators of center and covariance (from
cov.rob)
Usage
Mahalanobis(
x,
center,
cov,
method = c("classical", "mcd", "mve"),
nsamp = "best",
...
)Arguments
- x
a numeric matrix or data frame with, say, \(p\) columns
- center
mean vector of the data; if this and
covare both supplied, the function simply callsmahalanobisto calculate the result- cov
covariance matrix (p x p) of the data
- method
estimation method used for center and covariance, one of:
"classical"(product-moment),"mcd"(minimum covariance determinant), or"mve"(minimum volume ellipsoid).- nsamp
passed to
cov.rob- ...
other arguments passed to
cov.rob
Examples
summary(Mahalanobis(iris[, 1:4]))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.3195 2.1871 3.0628 3.9733 4.8053 13.1011
summary(Mahalanobis(iris[, 1:4], method="mve"))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.4461 2.5331 4.0110 5.5585 6.8295 25.7951
summary(Mahalanobis(iris[, 1:4], method="mcd"))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.4352 2.7301 5.7160 19.2207 36.7121 98.0335
