
Plot observation weights from a robust multivariate linear models
Source:R/plot.robmlm.R
plot.robmlm.RdCreates an index plot of the observation weights assigned in the last
iteration of robmlm. Observations with low weights have large
residual squared distances and are potential multivariate outliers with
respect to the fitted model.
Arguments
- x
A
"robmlm"object- labels
Observation labels; if not specified, uses rownames from the original data
- id.weight
Threshold for identifying observations with small weights
- id.pos
Position of observation label relative to the point
- pch
Point symbol(s); can be a vector of length equal to the number of observations in the data frame
- col
Point color(s)
- cex
Point character size(s)
- segments
logical; if
TRUE, draw line segments from 1.o down to the point- xlab
x axis label
- ylab
y axis label
- ...
other arguments passed to
plot
Examples
data(Skulls)
sk.rmod <- robmlm(cbind(mb, bh, bl, nh) ~ epoch, data=Skulls)
plot(sk.rmod, col=Skulls$epoch, segments=TRUE)
axis(side=3, at=15+seq(0,120,30), labels=levels(Skulls$epoch), cex.axis=1)
# Pottery data
data(Pottery, package = "carData")
pottery.rmod <- robmlm(cbind(Al,Fe,Mg,Ca,Na)~Site, data=Pottery)
plot(pottery.rmod, col=Pottery$Site, segments=TRUE)
# SocialCog data
data(SocialCog)
SC.rmod <- robmlm(cbind( MgeEmotions, ToM, ExtBias, PersBias) ~ Dx,
data=SocialCog)
plot(SC.rmod, col=SocialCog$Dx, segments=TRUE)