Abbott, E. A. (1884). Flatland: A romance of many dimensions.
Buccaneer Books.
Adler, D., & Murdoch, D. (2023). Rgl: 3D visualization using
OpenGL. https://CRAN.R-project.org/package=rgl
Aluja, T., Morineau, A., & Sanchez, G. (2018). Principal
component analysis for data science. https://pca4ds.github.io/
Andrews, D. F. (1972). Plots of high dimensional data.
Biometrics, 28, 123–136.
Anscombe, F. J. (1973). Graphs in statistical analysis. The American
Statistician, 27, 17–21.
Arel-Bundock, V. (2024a). Marginaleffects: Predictions, comparisons,
slopes, marginal means, and hypothesis tests. https://marginaleffects.com/
Arel-Bundock, V. (2024b). Modelsummary: Summary tables and plots for
statistical models and data: Beautiful, customizable, and
publication-ready. https://modelsummary.com
Asimov, D. (1985). Grand tour. SIAM Journal of Scientific and
Statistical Computing, 6(1), 128–143.
Barab’asi, A.-L. (2016). Network science. Cambridge University
Press.
Bartlett, M. S. (1937). Properties of sufficiency and statistical tests.
Proceedings of the Royal Society of London. Series A,
160(901), 268–282. https://doi.org/10.2307/96803
Becker, R. A., Cleveland, W. S., & Shyu, M.-J. (1996). The visual
design and control of trellis display. Journal of Computational and
Graphical Statistics, 5(2), 123–155.
Belsley, D. A. (1991). Conditioning diagnostics: Collinearity and
weak data in regression. Wiley.
Belsley, D. A., Kuh, E., & Welsch, R. E. (1980). Regression
diagnostics: Identifying influential data and sources of
collinearity. John Wiley; Sons.
Biecek, P., Baniecki, H., Krzyzinski, M., & Cook, D. (2023).
Performance is not enough: A story of the rashomon’s quartet.
https://arxiv.org/abs/2302.13356
Black, C., Southwell, C., Emmerson, L., Lunn, D., & Hart, T. (2018).
Time-lapse imagery of adélie penguins reveals differential winter
strategies and breeding site occupation. PLOS ONE,
13(3), e0193532. https://doi.org/10.1371/journal.pone.0193532
Blishen, B., Carroll, W., & Moore, C. (1987). The 1981 socioeconomic
index for occupations in canada. Canadian Review of Sociology/Revue
Canadienne de Sociologie, 24(4), 465–488. https://doi.org/10.1111/j.1755-618x.1987.tb00639.x
Bock, R. D. (1963). Programming univariate and multivariate analysis of
variance. Technometrics, 5(1), 95–117. https://doi.org/10.1080/00401706.1963.10490061
Bock, R. D. (1964). A computer program forunivariate and multivariate
analysis of variance. Proceedings of Scientific Symposium on
Statistics.
Bondy, J. A., & Murty, U. S. R. (2008). Graph theory.
Springer.
Borg, I., & Groenen, P. J. F. (2005). Modern Multidimensional Scaling: Theory and
Applications. Springer.
Borg, I., Groenen, P. J. F., & Mair, P. (2018). Applied
multidimensional scaling and unfolding. In SpringerBriefs in
Statistics. Springer International Publishing. https://doi.org/10.1007/978-3-319-73471-2
Box, G. E. P. (1949). A general distribution theory for a class of
likelihood criteria. Biometrika, 36(3-4), 317–346. https://doi.org/10.1093/biomet/36.3-4.317
Box, G. E. P. (1950). Problems in the analysis of growth and
wear curves. Biometrics, 6, 362–389.
Box, G. E. P. (1953). Non-normality and tests on variances.
Biometrika, 40(3/4), 318–335. https://doi.org/10.2307/2333350
Brown, M. B., & Forsythe, A. B. (1974). Robust tests for equality of
variances. Journal of the American Statistical Association,
69(346), 364–367. https://doi.org/10.1080/01621459.1974.10482955
Brown, P. J., & Zidek, J. V. (1980). Adaptive multivariate ridge
regression. The Annals of Statistics, 8(1), 64–74. http://www.jstor.org/stable/2240743
Buja, A., Cook, D., Asimov, D., & Hurley, C. (2005). Computational
methods for high-dimensional rotations in data visualization. In J. S.
CR Rao EJ Wegman (Ed.), Handbook of statistics (pp. 391–413).
Elsevier. https://doi.org/10.1016/s0169-7161(04)24014-7
cagne, M. (1885). Coordonnées parallèles
et axiales: Méthode de transformation
géométrique et
procédé nouveau de calcul graphique
déduits de la considération des
coordonnées parallèlles.
Gauthier-Villars. http://historical.library.cornell.edu/cgi-bin/cul.math/docviewer?did=00620001&seq=3
Cajori, F. (1926). Origins of fourth dimension concepts. The
American Mathematical Monthly, 33(8), 397–406. https://doi.org/10.1080/00029890.1926.11986607
Cattell, R. B. (1966). The scree test for the number of factors.
Multivariate Behavioral Research, 1(2), 245–276. https://doi.org/10.1207/s15327906mbr0102_10
Chambers, J. M., & Hastie, T. J. (1991). Statistical models in
s (p. 624). Chapman & Hall/CRC.
Cleveland, W. S. (1979). Robust locally weighted regression and
smoothing scatterplots. Journal of the American Statistical
Association, 74, 829–836.
Cleveland, W. S. (1985). The elements of graphing data.
Wadsworth Advanced Books.
Cleveland, W. S., & Devlin, S. J. (1988). Locally weighted
regression: An approach to regression analysis by local fitting.
Journal of the American Statistical Association, 83,
596–610.
Cleveland, W. S., & McGill, R. (1984). Graphical perception: Theory,
experimentation and application to the development of graphical methods.
Journal of the American Statistical Association, 79,
531–554.
Cleveland, W. S., & McGill, R. (1985). Graphical perception and
graphical methods for analyzing scientific data. Science,
229, 828–833.
Clyde, D. J., Cramer, E. M., & Sherin, R. J. (1966).
Multivariate statistical programs. Biometric
Laboratory,University of Miami.
Cochran, W. G. (1941). The distribution of the largest of a set of
estimated variances as a fraction of their total. Annals of
Eugenics, 11(1), 47–52. https://doi.org/10.1111/j.1469-1809.1941.tb02271.x
Conover, W. J., Johnson, M. E., & Johnson, M. M. (1981). A
comparative study of tests for homogeneity of variances, with
applications to the outer continental shelf bidding data.
Technometrics, 23(4), 351–361. https://doi.org/10.1080/00401706.1981.10487680
Cook, D., Buja, A., Cabrera, J., & Hurley, C. (1995). Grand tour and
projection pursuit. Journal of Computational and Graphical
Statistics, 4(3), 155. https://doi.org/10.2307/1390844
Cook, D., Buja, A., Lee, E.-K., & Wickham, H. (2008). Grand tours,
projection pursuit guided tours, and manual controls. In Handbook of
data visualization (pp. 295–314). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-33037-0_13
Cook, D., & Laa, U. (2024). Interactively exploring
high-dimensional data and models in R. Online. https://dicook.github.io/mulgar_book/
Cook, D., & Swayne, D. F. (2007). Interactive and dynamic
graphics for data analysis : With R and
GGobi. Springer. http://www.ggobi.org/book/
Cook, R. D. (1977). Detection of influential observation in linear
regression. Technometrics, 19(1), 15–18. http://links.jstor.org/sici?sici=0040-1706%28197702%2919%3A1%3C15%3ADOIOIL%3E2.0.CO%3B2-8
Cook, R. D. (1993). Exploring partial residual plots.
Technometrics, 35(4), 351–362.
Cook, R. D. (1996). Added-variable plots and curvature in linear
regression. Technometrics, 38(3), 275–278. https://doi.org/10.1080/00401706.1996.10484507
Cook, R. D., & Weisberg, S. (1982). Residuals and influence in
regression. Chapman; Hall.
Cook, R. D., & Weisberg, S. (1994). ARES plots for generalized
linear models. Computational Statistics & Data Analysis,
17(3), 303–315. https://doi.org/10.1016/0167-9473(92)00075-3
Costantini, G., Epskamp, S., Borsboom, D., Perugini, M., Mõttus, R.,
Waldorp, L. J., & Cramer, A. O. J. (2015). State of the aRt personality research: A tutorial on network
analysis of personality data in R. Journal of Research
in Personality, 54, 13–29. https://doi.org/10.1016/j.jrp.2014.07.003
Cotton, R. (2013). Learning R. O’Reilly Media.
Cox, D. R. (1968). Notes on some aspects of regression analysis.
Journal of the Royal Statistical Society Series A,
131, 265–279.
Csárdi, G., Nepusz, T., Traag, V., Horvát, S., Zanini, F., Noom, D.,
& Müller, K. (2024). igraph: Network
analysis and visualization in r. https://doi.org/10.5281/zenodo.7682609
Curran, J., & Hersh, T. (2021). Hotelling: Hotelling’s t^2 test
and variants. https://CRAN.R-project.org/package=Hotelling
Davies, R., Locke, S., & D’Agostino McGowan, L. (2022).
datasauRus: Datasets from the datasaurus dozen. https://CRAN.R-project.org/package=datasauRus
Davis, C. (1990). Body image and weight preoccupation: A comparison
between exercising and non-exercising women. Appetite,
16(1), 84. https://doi.org/10.1016/0195-6663(91)90115-9
Dempster, A. P. (1969). Elements of continuous multivariate
analysis. Addison-Wesley.
Dempster, A. P. (1972). Covariance selection. Biometrics,
28(1), 157–175.
Dixon, W. J. (1965). BMD biomedical computer programs. Health
Sciences Computing Facility, School of Medicine, University of
California; Health Sciences Computing Faculty.
Dray, S., Siberchicot, A., & Jean Thioulouse. Based on earlier work
by Alice Julien-Laferrière., with contributions from. (2023).
Adegraphics: An S4 lattice-based package for the representation of
multivariate data. http://pbil.univ-lyon1.fr/ADE-4/
Duncan, O. D. (1961). A socioeconomic index for all occupations. In Jr.
A. J. Reiss, P. K. H. O. D. Duncan, & C. C. North (Eds.),
Occupations and social status. The Free Press.
Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least
angle regression. The Annals of Statistics, 32(2),
407–499.
Emerson, J. W., Green, W. A., Schloerke, B., Crowley, J., Cook, D.,
Hofmann, H., & Wickham, H. (2013). The generalized pairs plot.
Journal of Computational and Graphical Statistics,
22(1), 79–91. http://www.tandfonline.com/doi/ref/10.1080/10618600.2012.694762
Euler, L. (1758). Elementa doctrinae solidorum. Novi Commentarii
Academiae Scientiarum Petropolitanae, 4, 109–140. https://scholarlycommons.pacific.edu/euler-works/230/
Farquhar, A. B., & Farquhar, H. (1891). Economic and industrial
delusions: A discourse of the case for protection. Putnam.
Fienberg, S. E. (1971). Randomization and social affairs: The 1970 draft
lottery. Science, 171, 255–261.
Finn, J. D. (1967). MULTIVARIANCE: Fortran program for
univariate and multivariate analysis of variance and covariance.
School of Education, State University of New York at Buffalo.
Fisher, R. A. (1923). Studies in crop variation. II. The manurial
response of different potato varieties. The Journal of Agricultural
Science, 13(2), 311–320. https://hdl.handle.net/2440/15179
Fisher, R. A. (1925b). Statistical methods for research
workers. Oliver & Boyd.
Fisher, R. A. (1925a). Statistical methods for research workers
(6th ed.). Oliver & Boyd.
Fisher, R. A. (1936). The use of multiple measurements in taxonomic
problems. Annals of Eugenics, 7(2), 179–188. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
Fishkeller, M. A., Friedman, J. H., & Tukey, J. W. (1974).
PRIM-9, an interactive multidimensional data display and
analysis system. Proceedings of the Pacific ACM Regional
Conference.
Flury, B., & Riedwyl, H. (1988). Multivariate statistics: A
practical approach. Chapman & Hall.
Fox, J. (1987). Effect displays for generalized linear models. In C. C.
Clogg (Ed.), Sociological methodology, 1987 (pp. 347–361).
Jossey-Bass.
Fox, J. (2003). Effect displays in R for generalized linear
models. Journal of Statistical Software, 8(15), 1–27.
Fox, J. (2016). Applied regression analysis and generalized linear
models (Third edition.). SAGE.
Fox, J. (2020). Regression diagnostics (2nd ed.).
SAGE Publications, Inc. https://doi.org/10.4135/9781071878651
Fox, J. (2021). A mathematical primer for social statistics
(2nd ed.). SAGE Publications, Inc. https://doi.org/10.4135/9781071878835
Fox, J., & Monette, G. (1992). Generalized collinearity diagnostics.
Journal of the American Statistical Association,
87(417), 178–183.
Fox, J., & Weisberg, S. (2018a). An R companion to
applied regression (Third). SAGE Publications. https://books.google.ca/books?id=uPNrDwAAQBAJ
Fox, J., & Weisberg, S. (2018b). Visualizing fit and lack of fit in
complex regression models with predictor effect plots and partial
residuals. Journal of Statistical Software, 87(9). https://doi.org/10.18637/jss.v087.i09
Fox, J., Weisberg, S., & Price, B. (2023). Car: Companion to
applied regression. https://CRAN.R-project.org/package=car
Fox, J., Weisberg, S., Price, B., Friendly, M., & Hong, J. (2022).
Effects: Effect displays for linear, generalized linear, and other
models. https://www.r-project.org
Friedman, J., Hastie, T., Tibshirani, R., Narasimhan, B., Tay, K.,
Simon, N., & Yang, J. (2023). Glmnet: Lasso and elastic-net
regularized generalized linear models. https://glmnet.stanford.edu
Friendly, M. (1991). SAS System for statistical
graphics (1st ed.). SAS Institute. http://www.sas.
com/service/doc/pubcat/uspubcat/ind_files/56143.html
Friendly, M. (1994). Mosaic displays for multi-way contingency tables.
Journal of the American Statistical Association, 89,
190–200. http://www.jstor.org/stable/2291215
Friendly, M. (1999). Extending mosaic displays: Marginal, conditional,
and partial views of categorical data. Journal of Computational and
Graphical Statistics, 8(3), 373–395. http://datavis.ca/papers/drew/drew.pdf
Friendly, M. (2002). Corrgrams: Exploratory displays for correlation
matrices. The American Statistician, 56(4), 316–324.
https://doi.org/10.1198/000313002533
Friendly, M. (2007). HE plots for multivariate general
linear models. Journal of Computational and Graphical
Statistics, 16(2), 421–444. https://doi.org/10.1198/106186007X208407
Friendly, M. (2008). The Golden Age of statistical
graphics. Statistical Science, 23(4), 502–535. https://doi.org/10.1214/08-STS268
Friendly, M. (2011). Generalized ridge trace plots: Visualizing bias
and precision with the genridge R package. SCS
Seminar.
Friendly, M. (2013). The generalized ridge trace plot: Visualizing bias
and precision. Journal of Computational and Graphical
Statistics, 22(1), 50–68. https://doi.org/10.1080/10618600.2012.681237
Friendly, M. (2022). The life and works of andré-michel
guerry, revisited. Sociological Spectrum, 42(4-6),
233–259. https://doi.org/10.1080/02732173.2022.2078450
Friendly, M. (2023). vcdExtra: Vcd extensions and additions. https://friendly.github.io/vcdExtra/
Friendly, M. (2024). Genridge: Generalized ridge trace plots for
ridge regression. https://github.com/friendly/genridge
Friendly, M., Fox, J., & Chalmers, P. (2024). Matlib: Matrix
functions for teaching and learning linear algebra and multivariate
statistics. https://github.com/friendly/matlib
Friendly, M., & Kwan, E. (2003). Effect ordering for data displays.
Computational Statistics and Data Analysis, 43(4),
509–539. https://doi.org/10.1016/S0167-9473(02)00290-6
Friendly, M., & Kwan, E. (2009). Where’s Waldo:
Visualizing collinearity diagnostics. The American
Statistician, 63(1), 56–65. https://doi.org/10.1198/tast.2009.0012
Friendly, M., & Meyer, D. (2016). Discrete data analysis with
R: Visualization and modeling techniques for categorical
and count data. Chapman & Hall/CRC.
Friendly, M., Monette, G., & Fox, J. (2013). Elliptical insights:
Understanding statistical methods through elliptical geometry.
Statistical Science, 28(1), 1–39. https://doi.org/10.1214/12-STS402
Friendly, M., & Wainer, H. (2021). A history of data
visualization and graphic communication. Harvard University Press.
https://doi.org/10.4159/9780674259034
Fuller, W. (2006). Measurement error models (2nd ed.). John
Wiley & Sons.
Funkhouser, H. G. (1937). Historical development of the graphical
representation of statistical data. Osiris, 3(1),
269–405. http://tinyurl.com/32ema9
Gabriel, K. R. (1971). The biplot graphic display of matrices with
application to principal components analysis. Biometrics,
58(3), 453–467. https://doi.org/10.2307/2334381
Gabriel, K. R. (1981). Biplot display of multivariate matrices for
inspection of data and diagnosis. In V. Barnett (Ed.), Interpreting
multivariate data (pp. 147–173). John Wiley; Sons.
Galton, F. (1863). Meteorographica, or methods of mapping the
weather. Macmillan. http://www.mugu.com/galton/books/meteorographica/index.htm
Galton, F. (1886). Regression towards mediocrity in hereditary stature.
Journal of the Anthropological Institute, 15, 246–263.
http://www.jstor.org/cgi-bin/jstor/viewitem/09595295/dm995266/99p0374f/0
Galton, F. (1889). Natural inheritance. Macmillan. http://galton.org/books/natural-inheritance/pdf/galton-nat-inh-1up-clean.pdf
Gannett, H. (1898). Statistical atlas of the united states, eleventh
(1890) census. U.S. Government Printing Office.
Gastwirth, J. L., Gel, Y. R., & Miao, W. (2009). The impact of Levene’s test of equality of variances on
statistical theory and practice. Statistical Science,
24(3), 343–360. https://doi.org/10.1214/09-STS301
Gelman, A., Hullman, J., & Kennedy, L. (2023). Causal quartets:
Different ways to attain the same average treatment effect. http://www.stat.columbia.edu/~gelman/research/unpublished/causal_quartets.pdf
Goeman, J., Meijer, R., Chaturvedi, N., & Lueder, M. (2022).
Penalized: L1 (lasso and fused lasso) and L2 (ridge) penalized
estimation in GLMs and in the cox model. https://CRAN.R-project.org/package=penalized
Gorman, K. B., Williams, T. D., & Fraser, W. R. (2014). Ecological
sexual dimorphism and environmental variability within a community of
antarctic penguins (genus pygoscelis). PLoS
ONE, 9(3), e90081. https://doi.org/10.1371/journal.pone.0090081
Gower, J. C., & Hand, D. J. (1996). Biplots. Chapman &
Hall.
Gower, J. C., Lubbe, S. G., & Roux, N. J. L. (2011).
Understanding biplots. Wiley. http://books.google.ca/books?id=66gQCi5JOKYC
Grandjean, M. (2016). A social network analysis of Twitter:
Mapping the digital humanities community. Cogent Arts
&Amp; Humanities, 3(1), 1171458. https://doi.org/10.1080/23311983.2016.1171458
Graybill, F. A. (1961). An introduction to linear statistical
models. McGraw-Hill.
Greenacre, M. (1984). Theory and applications of correspondence
analysis. Academic Press.
Greenacre, M. (2010). Biplots in practice.
Fundación BBVA. https://books.google.ca/books?id=dv4LrFP7U\_EC
Guerry, A.-M. (1833). Essai sur la statistique morale de la
France. Crochard.
Hahsler, M., Buchta, C., & Hornik, K. (2024). Seriation:
Infrastructure for ordering objects using seriation. https://github.com/mhahsler/seriation
Haitovsky, Y. (1987). On multivariate ridge regression.
Biometrika, 74(3), 563–570. https://doi.org/10.1093/biomet/74.3.563
Harrison, P. (2023). Langevitour: Smooth interactive touring of high
dimensions, demonstrated with scRNA-seq data. The R Journal,
15(2), 206–219. https://doi.org/10.32614/RJ-2023-046
Harrison, P. (2024). Langevin tour. https://CRAN.R-project.org/package=langevitour
Hart, C., & Wang, E. (2022). Detourr: Portable and performant
tour animations. https://CRAN.R-project.org/package=detourr
Hartigan, J. A. (1975a). Clustering algorithms. John Wiley;
Sons.
Hartigan, J. A. (1975b). Printer graphics for clustering. Journal of
Statistical Computing and Simulation, 4, 187–213.
Hartley, H. O. (1950). The use of range in analysis of variance.
Biometrika, 37(3–4), 271–280. https://doi.org/10.1093/biomet/37.3-4.271
Hartman, L. I. (2016). Schizophrenia and schizoaffective disorder:
One condition or two? [PhD dissertation]. York University.
Harwell, M. R., Rubinstein, E. N., Hayes, W. S., & Olds, C. C.
(1992). Summarizing monte carlo results in methodological research: The
one- and two-factor fixed effects ANOVA cases. Journal
of Educational and Behavioral Statistics, 17(4), 315–339.
https://doi.org/10.3102/10769986017004315
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements
of statistical learning: Data mining, inference and prediction (2nd
ed.). Springer. http://www-stat.stanford.edu/~tibs/ElemStatLearn/
Healy, M. J. R. (1968). Multivariate normal plotting. Journal of the
Royal Statistical Society Series C, 17(2), 157–161.
Heinrichs, R. W., Pinnock, F., Muharib, E., Hartman, L., Goldberg, J.,
& McDermid Vaz, S. (2015). Neurocognitive normality in schizophrenia
revisited. Schizophrenia Research: Cognition, 2(4),
227–232. https://doi.org/10.1016/j.scog.2015.09.001
Herschel, J. F. W. (1833). On the investigation of the orbits of
revolving double stars: Being a supplement to a paper entitled
"micrometrical measures of 364 double stars". Memoirs of the Royal
Astronomical Society, 5, 171–222.
Hoaglin, D. C., & Welsch, R. E. (1978). The hat matrix in regression
and ANOVA. The American Statistician,
32(1), 17–22. https://doi.org/10.1080/00031305.1978.10479237
Hocking, R. R. (2013). Methods and applications of linear models:
Regression and the analysis of variance. Wiley. https://books.google.ca/books?id=iq2J-1iS6HcC
Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression:
Biased estimation for nonorthogonal problems.
Technometrics, 12, 55–67.
Hoerl, A. E., Kennard, R. W., & Baldwin, K. F. (1975). Ridge
regression: Some simulations. Communications in Statistics,
4(2), 105–123. https://doi.org/10.1080/03610927508827232
Hofmann, H., VanderPlas, S., & Ge, Y. (2022). Ggpcp: Parallel
coordinate plots in the ggplot2 framework. https://github.com/heike/ggpcp
Hofstadter, D. R. (1979). Gödel, escher, bach: An eternal golden
braid. Basic Books.
Højsgaard, S., Edwards, D., & Lauritzen, S. (2012). Graphical
models with R. Springer Science & Business Media.
Horst, A., Hill, A., & Gorman, K. (2022). Palmerpenguins: Palmer
archipelago (antarctica) penguin data. https://allisonhorst.github.io/palmerpenguins/
Hotelling, H. (1931). The generalization of Student’s ratio. The Annals of Mathematical
Statistics, 2(3), 360–378. https://doi.org/10.1214/aoms/1177732979
Husson, F., Josse, J., Le, S., & Mazet, J. (2024). FactoMineR:
Multivariate exploratory data analysis and data mining. http://factominer.free.fr
Husson, F., Le, S., & Pagès, J. (2017). Exploratory multivariate
analysis by example using r. Chapman & Hall. https://doi.org/10.1201/b21874
IBM. (1965). Proceedings of the IBM scientific computing symposium
on statistics: Oct 21-23, 1963 (L. Robinson, Ed.). IBM. https://www.amazon.com/Proceedings-Scientific-Computing-Symposium-Statistics/dp/B000GL5RLU
Inselberg, A. (1985). The plane with parallel coordinates. The
Visual Computer, 1, 69–91.
Isvoranu, A.-M., Epskamp, S., Waldorp, L. J., & Borsboom, D. (2022).
Network psychometrics with r: A guide for behavioral and social
scientists. Routledge. https://doi.org/10.4324/9781003111238
Kassambara, A., & Mundt, F. (2020). Factoextra: Extract and
visualize the results of multivariate data analyses. http://www.sthda.com/english/rpkgs/factoextra
Kastellec, J. P., & Leoni, E. L. (2007). Using graphs instead of
tables in political science. Perspectives on Politics,
5(04), 755–771. https://doi.org/10.1017/S1537592707072209
Krijthe, J. (2023). Rtsne: T-distributed stochastic neighbor
embedding using a barnes-hut implementation. https://github.com/jkrijthe/Rtsne
Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness
of fit to a nonmetric hypothesis. Psychometrika,
29(1), 1–27. https://doi.org/10.1007/bf02289565
Kwan, E., Lu, I. R. R., & Friendly, M. (2009). Tableplot: A new tool
for assessing precise predictions. Zeitschrift für
Psychologie / Journal of Psychology, 217(1), 38–48. https://doi.org/10.1027/0044-3409.217.1.38
Larmarange, J. (2024). Ggstats: Extension to ggplot2 for plotting
stats. https://larmarange.github.io/ggstats/
Larsen, W. A., & McCleary, S. J. (1972). The use of partial residual
plots in regression analysis. Technometrics, 14,
781–790.
Lauritzen, S. L. (1996). Graphical models. Oxford University
Press.
Lawless, J. F., & Wang, P. (1976). A simulation study of ridge and
other regression estimators. Communications in Statistics,
5, 307–323.
Lee, E.-K., & Cook, D. (2009). A projection pursuit index for large
p small n data. Statistics and Computing, 20(3),
381–392. https://doi.org/10.1007/s11222-009-9131-1
Lee, S. (2021). Liminal: Multivariate data visualization with tours
and embeddings. https://CRAN.R-project.org/package=liminal
Levene, H. (1960). Robust tests for equality of variances. In I. Olkin,
S. G. Ghurye, W. Hoeffding, W. G. Madow, & H. B. Mann (Eds.),
Contributions to probability and statistics: Essays in honor of
Harold Hotelling (pp. 278–292). Stanford University
Press.
Lix, J. M., L. M. Keselman, & Keselman, H. J. (1996). Consequences
of assumption violations revisited: A quantitative review of
alternatives to the one-way analysis of variance F test.
Review of Educational Research, 66(4), 579–619. https://doi.org/10.3102/00346543066004579
Longley, J. W. (1967). An appraisal of least squares programs for the
electronic computer from the point of view of the user. Journal of
the American Statistical Association, 62, 819–841.
https://doi.org/https://www.tandfonline.com/doi/abs/10.1080/01621459.1967.10500896
Lüdecke, D. (2024). Ggeffects: Create tidy data frames of marginal
effects for ggplot from model outputs. https://strengejacke.github.io/ggeffects/
Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P., &
Makowski, D. (2021). performance: An
R package for assessment, comparison and testing of
statistical models. Journal of Open Source Software,
6(60), 3139. https://doi.org/10.21105/joss.03139
Lüdecke, D., Ben-Shachar, M. S., Patil, I., Wiernik, B. M., &
Makowski, D. (2022). Easystats: Framework for easy statistical modeling,
visualization, and reporting. In CRAN. https://easystats.github.io/easystats/
Maaten, L. van der, & Hinton, G. (2008). Visualizing data using
t-SNE. Journal of Machine Learning
Research, 9, 2579–2605. http://www.jmlr.org/papers/v9/vandermaaten08a.html
Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis
with applications. Biometrika, 57(3), 519–530.
https://doi.org/http://dx.doi.org/10.2307/2334770
Mardia, K. V. (1974). Applications of some measures of multivariate
skewness and kurtosis in testing normality and robustness studies.
Sankhya: The Indian Journal of Statistics, Series B,
36(2), 115–128. http://www.jstor.org/stable/25051892
Marquardt, D. W. (1970). Generalized inverses, ridge regression, biased
linear estimation, and nonlinear estimation. Technometrics,
12, 591–612.
Marquardt, D. W., & Snee, R. D. (1975). Ridge regression in
practice. The American Statistician, 29(1), 3–20. https://doi.org/10.1080/00031305.1975.10479105
Martí, R., & Laguna, M. (2003). Heuristics and meta-heuristics for
2-layer straight line crossing minimization. Discrete Applied
Mathematics, 127(3), 665–678.
Matejka, J., & Fitzmaurice, G. (2017, May). Same stats, different
graphs. Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems. https://doi.org/10.1145/3025453.3025912
Matloff, N. (2011). The art of R programming:
A tour of statistical software design. No Starch
Press.
McDonald, G. C. (2009). Ridge regression. Wiley Interdisciplinary
Reviews: Computational Statistics, 1(1), 93–100. https://doi.org/10.1002/wics.14
McGowan, L. D., Gerke, T., & Barrett, M. (2023). Causal inference is
not just a statistics problem. Journal of Statistics and Data
Science Education, 1–9. https://doi.org/10.1080/26939169.2023.2276446
Meyer, D., Zeileis, A., Hornik, K., & Friendly, M. (2024). Vcd:
Visualizing categorical data. https://CRAN.R-project.org/package=vcd
Meyers, L. S., Gamst, G., & Guarino, A. J. (2006). Applied
multivariate research: Design and interpretation. SAGE
Publications.
Monette, G. (1990). Geometry of multiple regression and interactive
3-D graphics. In J. Fox & S. Long (Eds.), Modern
methods of data analysis (pp. 209–256). SAGE Publications.
O’Brien, P. C. (1992). Robust procedures for testing equality of
covariance matrices. Biometrics, 48(3), 819–827. http://www.jstor.org/stable/2532347
Oksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P.,
Minchin, P. R., O’Hara, R. B., Solymos, P., Stevens, M. H. H., Szoecs,
E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D.,
Carvalho, G., Chirico, M., De Caceres, M., Durand, S., … Weedon, J.
(2024). Vegan: Community ecology package. https://github.com/vegandevs/vegan
Otto, J., & Kahle, D. (2023). Ggdensity: Interpretable bivariate
density visualization with ggplot2. https://jamesotto852.github.io/ggdensity/
Pearson, K. (1896). Contributions to the mathematical theory of
evolution—III, regression, heredity and panmixia.
Philosophical Transactions of the Royal Society of London,
187, 253–318.
Pearson, K. (1901). On lines and planes of closest fit to systems of
points in space. Philosophical Magazine, 6(2),
559–572.
Pearson, K. (1903). I. Mathematical contributions to the theory of
evolution. —XI. On the influence of natural selection on the variability
and correlation of organs. Philosophical Transactions of the Royal
Society of London, 200(321–330), 1–66. https://doi.org/10.1098/rsta.1903.0001
Pedersen, T. L., & Robinson, D. (2024). Gganimate: A grammar of
animated graphics. https://gganimate.com
Pineo, P. O., & Porter, J. (1967). Occupational prestige in canada*.
Canadian Review of Sociology, 4(1), 24–40.
https://doi.org/https://doi.org/10.1111/j.1755-618X.1967.tb00472.x
Pineo, P. O., & Porter, J. (2008). Occupational prestige in canada.
Canadian Review of Sociology, 4(1), 24–40. https://doi.org/10.1111/j.1755-618x.1967.tb00472.x
Playfair, W. (1786). Commercial and political atlas: Representing,
by copper-plate charts, the progress of the commerce, revenues,
expenditure, and debts of england, during the whole of the eighteenth
century. Debrett; Robinson;; Sewell. http://ucpj.uchicago.edu/Isis/journal/demo/v000n000/000000/000000.fg4.html
Playfair, W. (1801). Statistical breviary; shewing, on a principle
entirely new, the resources of every state and kingdom in
Europe. Wallis.
Reaven, G. M., & Miller, R. G. (1968). Study of the relationship
between glucose and insulin responses to an oral glucose load in man.
Diabetes, 17(9), 560–569. https://doi.org/10.2337/diab.17.9.560
Reaven, G. M., & Miller, R. G. (1979). An attempt to define the
nature of chemical diabetes using a multidimensional analysis.
Diabetologia, 16, 17–24.
Robinaugh, D. J., Hoekstra, R. H. A., Toner, E. R., & Borsboom, D.
(2019). The network approach to psychopathology: A review of the
literature 2008–2018 and an agenda for future research.
Psychological Medicine, 50(3), 353–366. https://doi.org/10.1017/s0033291719003404
Rogan, J. C., & Keselman, H. J. (1977). Is the ANOVA
f-test robust to variance heterogeneity when sample sizes are equal?: An
investigation via a coefficient of variation. American Educational
Research Journal, 14(4), 493–498. https://doi.org/10.3102/00028312014004493
Sarkar, D. (2024). Lattice: Trellis graphics for r. https://lattice.r-forge.r-project.org/
Scheffé, H. A. (1960). The analysis of variance. Wiley.
Schloerke, B., Cook, D., Larmarange, J., Briatte, F., Marbach, M.,
Thoen, E., Elberg, A., & Crowley, J. (2024). GGally: Extension
to ggplot2. https://ggobi.github.io/ggally/
Scott, D. W. (1992). Multivariate density estimation: Theory,
practice, and visualization. Wiley.
Searle, S. R., Speed, F. M., & Milliken, G. A. (1980). Population
marginal means in the linear model: An alternative to least squares
means. The American Statistician, 34(4), 216–221.
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test
for normality (complete samples). Biometrika, 52(3–4),
591–611. https://doi.org/10.1093/biomet/52.3-4.591
Shepard, R. N. (1962a). The analysis of proximities: Multidimensional
scaling with an unknown distance function. i. Psychometrika,
27(2), 125–140. https://doi.org/10.1007/bf02289630
Shepard, R. N. (1962b). The analysis of proximities: Multidimensional
scaling with an unknown distance function. II. Psychometrika,
27(3), 219–246. https://doi.org/10.1007/bf02289621
Shepard, R. N., Romney, A. K., Nerlove, S. B., & Board, M. S. S.
(1972a). Multidimensional scaling; theory and applications in the
behavioral sciences: Vols. II. Applications. Seminar Press. https://books.google.ca/books?id=PpFAAQAAIAAJ
Shepard, R. N., Romney, A. K., Nerlove, S. B., & Board, M. S. S.
(1972b). Multidimensional scaling: Theory and applications in the
behavioral sciences: Vols. I. Theory. Seminar Press. https://books.google.ca/books?id=pJRAAQAAIAAJ
Shoben, E. J. (1983). Applications of multidimensional scaling in
cognitive psychology. Applied Psychological Measurement,
7(4), 473–490. https://doi.org/10.1177/014662168300700406
Silverman, B. W. (1986). Density estimation for statistics and data
analysis. Chapman & Hall.
Simpson, E. H. (1951). The interpretation of interaction in contingency
tables. Journal of the Royal Statistical Society, Series B,
30, 238–241.
Swayne, D. F., Cook, D., & Buja, A. (1998). XGobi: Interactive
dynamic data visualization in the x window system. Journal of
Computational and Graphical Statistics, 7(1), 113–130. https://doi.org/10.1080/10618600.1998.10474764
Swayne, D. F., Lang, D. T., Buja, A., & Cook, D. (2003).
GGobi: Evolving from XGobi into an extensible
framework for interactive data visualization. Computational
Statistics &Amp; Data Analysis, 43(4), 423–444. https://doi.org/10.1016/s0167-9473(02)00286-4
Teetor, P. (2011). R cookbook.
O’Reilly Media.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society, Series B:
Methodological, 58, 267–288.
Tiku, M. L., & Balakrishnan, N. (1984). Testing equality of
population variances the robust way. Communications in Statistics -
Theory and Methods, 13(17), 2143–2159. https://doi.org/10.1080/03610928408828818
Timm, N. H. (1975). Multivariate analysis with applications in
education and psychology. Wadsworth (Brooks/Cole).
Torgerson, W. S. (1952). Multidimensional scaling: I. Theory and method.
Psychometrika, 17(4), 401–419. https://doi.org/10.1007/bf02288916
VanderPlas, S., Ge, Y., Unwin, A., & Hofmann, H. (2023). Penguins go
parallel: A grammar of graphics framework for generalized parallel
coordinate plots. Journal of Computational and Graphical
Statistics, 1–16. https://doi.org/10.1080/10618600.2023.2195462
Velleman, P. F., & Welsh, R. E. (1981). Efficient computing of
regression diagnostics. The American Statistician,
35(4), 234–242.
Vinod, H. D. (1978). A survey of ridge regression and related techniques
for improvements over ordinary least squares. The Review of
Economics and Statistics, 60(1), 121–131. http://www.jstor.org/stable/1924340
Waddell, A., & Oldford, R. W. (2023). Loon: Interactive
statistical data visualization. https://CRAN.R-project.org/package=loon
Warne, F. T. (2014). A primer on multivariate analysis of
variance(MANOVA) for behavioral scientists. Practical Assessment,
Research & Evaluation, 19(1). https://scholarworks.umass.edu/pare/vol19/iss1/17/
Wegman, E. J. (1990). Hyperdimensional data analysis using parallel
coordinates. Journal of the American Statistical Association,
85(411), 664–675.
Wei, T., & Simko, V. (2024). Corrplot: Visualization of a
correlation matrix. https://github.com/taiyun/corrplot
Welch, B. L. (1947). The generalization of "student’s" problem when
several different population varlances are involved.
Biometrika, 34(1–2), 28–35. https://doi.org/10.1093/biomet/34.1-2.28
West, D. B. (2001). Introduction to graph theory. Prentice
hall.
Whittaker, J. (1990). Graphical models in applied multivariate
statistics. John Wiley; Sons.
Wickham, H. (2014). Advanced R. Chapman and
Hall/CRC.
Wickham, H., & Cook, D. (2024). Tourr: Tour methods for
multivariate data visualisation. https://github.com/ggobi/tourr
Wickham, H., Cook, D., Hofmann, H., & Buja, A. (2011). Tourr: An
R package for exploring multivariate data with projections.
Journal of Statistical Software, 40(2). https://doi.org/10.18637/jss.v040.i02
Wilkinson, G. N., & Rogers, C. E. (1973). Symbolic description of
factorial models for analysis of variance. Applied Statistics,
22(3), 392. https://doi.org/10.2307/2346786
Winer, B. J. (1962). Statistical principles in experimental
design. McGraw-Hill.
Wood, S. N. (2006). Generalized additive models: An introduction
with r. Chapman; Hall/CRC Press.
Wright, K. (2021). Corrgram: Plot a correlogram. https://kwstat.github.io/corrgram/
Xie, Y. (2021). Animation: A gallery of animations in statistics and
utilities to create animations. https://yihui.org/animation/
Xu, Z., & Oldford, R. W. (2021). Loon.tour: Tour in ’loon’.
https://cran.r-project.org/package=loon.tourr
Zhang, J., & Boos, D. D. (1992). Bootstrap critical values for
testing homogeneity of covariance matrices. Journal of the American
Statistical Association, 87(418), 425–429. http://www.jstor.org/stable/2290273