References

Abbott, E. A. (1884). Flatland: A romance of many dimensions. Buccaneer Books.
Adler, D., & Murdoch, D. (2023). Rgl: 3D visualization using OpenGL. https://CRAN.R-project.org/package=rgl
Aluja, T., Morineau, A., & Sanchez, G. (2018). Principal component analysis for data science. https://pca4ds.github.io/
Andrews, D. F. (1972). Plots of high dimensional data. Biometrics, 28, 123–136.
Anscombe, F. J. (1973). Graphs in statistical analysis. The American Statistician, 27, 17–21.
Arel-Bundock, V. (2024a). Marginaleffects: Predictions, comparisons, slopes, marginal means, and hypothesis tests. https://marginaleffects.com/
Arel-Bundock, V. (2024b). Modelsummary: Summary tables and plots for statistical models and data: Beautiful, customizable, and publication-ready. https://modelsummary.com
Asimov, D. (1985). Grand tour. SIAM Journal of Scientific and Statistical Computing, 6(1), 128–143.
Barab’asi, A.-L. (2016). Network science. Cambridge University Press.
Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. Proceedings of the Royal Society of London. Series A, 160(901), 268–282. https://doi.org/10.2307/96803
Becker, R. A., Cleveland, W. S., & Shyu, M.-J. (1996). The visual design and control of trellis display. Journal of Computational and Graphical Statistics, 5(2), 123–155.
Belsley, D. A. (1991). Conditioning diagnostics: Collinearity and weak data in regression. Wiley.
Belsley, D. A., Kuh, E., & Welsch, R. E. (1980). Regression diagnostics: Identifying influential data and sources of collinearity. John Wiley; Sons.
Biecek, P., Baniecki, H., Krzyzinski, M., & Cook, D. (2023). Performance is not enough: A story of the rashomon’s quartet. https://arxiv.org/abs/2302.13356
Black, C., Southwell, C., Emmerson, L., Lunn, D., & Hart, T. (2018). Time-lapse imagery of adélie penguins reveals differential winter strategies and breeding site occupation. PLOS ONE, 13(3), e0193532. https://doi.org/10.1371/journal.pone.0193532
Blishen, B., Carroll, W., & Moore, C. (1987). The 1981 socioeconomic index for occupations in canada. Canadian Review of Sociology/Revue Canadienne de Sociologie, 24(4), 465–488. https://doi.org/10.1111/j.1755-618x.1987.tb00639.x
Bock, R. D. (1963). Programming univariate and multivariate analysis of variance. Technometrics, 5(1), 95–117. https://doi.org/10.1080/00401706.1963.10490061
Bock, R. D. (1964). A computer program forunivariate and multivariate analysis of variance. Proceedings of Scientific Symposium on Statistics.
Bondy, J. A., & Murty, U. S. R. (2008). Graph theory. Springer.
Borg, I., & Groenen, P. J. F. (2005). Modern Multidimensional Scaling: Theory and Applications. Springer.
Borg, I., Groenen, P. J. F., & Mair, P. (2018). Applied multidimensional scaling and unfolding. In SpringerBriefs in Statistics. Springer International Publishing. https://doi.org/10.1007/978-3-319-73471-2
Box, G. E. P. (1949). A general distribution theory for a class of likelihood criteria. Biometrika, 36(3-4), 317–346. https://doi.org/10.1093/biomet/36.3-4.317
Box, G. E. P. (1950). Problems in the analysis of growth and wear curves. Biometrics, 6, 362–389.
Box, G. E. P. (1953). Non-normality and tests on variances. Biometrika, 40(3/4), 318–335. https://doi.org/10.2307/2333350
Brown, M. B., & Forsythe, A. B. (1974). Robust tests for equality of variances. Journal of the American Statistical Association, 69(346), 364–367. https://doi.org/10.1080/01621459.1974.10482955
Brown, P. J., & Zidek, J. V. (1980). Adaptive multivariate ridge regression. The Annals of Statistics, 8(1), 64–74. http://www.jstor.org/stable/2240743
Buja, A., Cook, D., Asimov, D., & Hurley, C. (2005). Computational methods for high-dimensional rotations in data visualization. In J. S. CR Rao EJ Wegman (Ed.), Handbook of statistics (pp. 391–413). Elsevier. https://doi.org/10.1016/s0169-7161(04)24014-7
cagne, M. (1885). Coordonnées parallèles et axiales: Méthode de transformation géométrique et procédé nouveau de calcul graphique déduits de la considération des coordonnées parallèlles. Gauthier-Villars. http://historical.library.cornell.edu/cgi-bin/cul.math/docviewer?did=00620001&seq=3
Cajori, F. (1926). Origins of fourth dimension concepts. The American Mathematical Monthly, 33(8), 397–406. https://doi.org/10.1080/00029890.1926.11986607
Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1(2), 245–276. https://doi.org/10.1207/s15327906mbr0102_10
Chambers, J. M., & Hastie, T. J. (1991). Statistical models in s (p. 624). Chapman & Hall/CRC.
Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, 74, 829–836.
Cleveland, W. S. (1985). The elements of graphing data. Wadsworth Advanced Books.
Cleveland, W. S., & Devlin, S. J. (1988). Locally weighted regression: An approach to regression analysis by local fitting. Journal of the American Statistical Association, 83, 596–610.
Cleveland, W. S., & McGill, R. (1984). Graphical perception: Theory, experimentation and application to the development of graphical methods. Journal of the American Statistical Association, 79, 531–554.
Cleveland, W. S., & McGill, R. (1985). Graphical perception and graphical methods for analyzing scientific data. Science, 229, 828–833.
Clyde, D. J., Cramer, E. M., & Sherin, R. J. (1966). Multivariate statistical programs. Biometric Laboratory,University of Miami.
Cochran, W. G. (1941). The distribution of the largest of a set of estimated variances as a fraction of their total. Annals of Eugenics, 11(1), 47–52. https://doi.org/10.1111/j.1469-1809.1941.tb02271.x
Conover, W. J., Johnson, M. E., & Johnson, M. M. (1981). A comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding data. Technometrics, 23(4), 351–361. https://doi.org/10.1080/00401706.1981.10487680
Cook, D., Buja, A., Cabrera, J., & Hurley, C. (1995). Grand tour and projection pursuit. Journal of Computational and Graphical Statistics, 4(3), 155. https://doi.org/10.2307/1390844
Cook, D., Buja, A., Lee, E.-K., & Wickham, H. (2008). Grand tours, projection pursuit guided tours, and manual controls. In Handbook of data visualization (pp. 295–314). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-33037-0_13
Cook, D., & Laa, U. (2024). Interactively exploring high-dimensional data and models in R. Online. https://dicook.github.io/mulgar_book/
Cook, D., & Swayne, D. F. (2007). Interactive and dynamic graphics for data analysis : With R and GGobi. Springer. http://www.ggobi.org/book/
Cook, R. D. (1977). Detection of influential observation in linear regression. Technometrics, 19(1), 15–18. http://links.jstor.org/sici?sici=0040-1706%28197702%2919%3A1%3C15%3ADOIOIL%3E2.0.CO%3B2-8
Cook, R. D. (1993). Exploring partial residual plots. Technometrics, 35(4), 351–362.
Cook, R. D. (1996). Added-variable plots and curvature in linear regression. Technometrics, 38(3), 275–278. https://doi.org/10.1080/00401706.1996.10484507
Cook, R. D., & Weisberg, S. (1982). Residuals and influence in regression. Chapman; Hall.
Cook, R. D., & Weisberg, S. (1994). ARES plots for generalized linear models. Computational Statistics & Data Analysis, 17(3), 303–315. https://doi.org/10.1016/0167-9473(92)00075-3
Costantini, G., Epskamp, S., Borsboom, D., Perugini, M., Mõttus, R., Waldorp, L. J., & Cramer, A. O. J. (2015). State of the aRt personality research: A tutorial on network analysis of personality data in R. Journal of Research in Personality, 54, 13–29. https://doi.org/10.1016/j.jrp.2014.07.003
Cotton, R. (2013). Learning R. O’Reilly Media.
Cox, D. R. (1968). Notes on some aspects of regression analysis. Journal of the Royal Statistical Society Series A, 131, 265–279.
Csárdi, G., Nepusz, T., Traag, V., Horvát, S., Zanini, F., Noom, D., & Müller, K. (2024). igraph: Network analysis and visualization in r. https://doi.org/10.5281/zenodo.7682609
Curran, J., & Hersh, T. (2021). Hotelling: Hotelling’s t^2 test and variants. https://CRAN.R-project.org/package=Hotelling
Davies, R., Locke, S., & D’Agostino McGowan, L. (2022). datasauRus: Datasets from the datasaurus dozen. https://CRAN.R-project.org/package=datasauRus
Davis, C. (1990). Body image and weight preoccupation: A comparison between exercising and non-exercising women. Appetite, 16(1), 84. https://doi.org/10.1016/0195-6663(91)90115-9
Dempster, A. P. (1969). Elements of continuous multivariate analysis. Addison-Wesley.
Dempster, A. P. (1972). Covariance selection. Biometrics, 28(1), 157–175.
Dixon, W. J. (1965). BMD biomedical computer programs. Health Sciences Computing Facility, School of Medicine, University of California; Health Sciences Computing Faculty.
Dray, S., Siberchicot, A., & Jean Thioulouse. Based on earlier work by Alice Julien-Laferrière., with contributions from. (2023). Adegraphics: An S4 lattice-based package for the representation of multivariate data. http://pbil.univ-lyon1.fr/ADE-4/
Duncan, O. D. (1961). A socioeconomic index for all occupations. In Jr. A. J. Reiss, P. K. H. O. D. Duncan, & C. C. North (Eds.), Occupations and social status. The Free Press.
Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. The Annals of Statistics, 32(2), 407–499.
Emerson, J. W., Green, W. A., Schloerke, B., Crowley, J., Cook, D., Hofmann, H., & Wickham, H. (2013). The generalized pairs plot. Journal of Computational and Graphical Statistics, 22(1), 79–91. http://www.tandfonline.com/doi/ref/10.1080/10618600.2012.694762
Euler, L. (1758). Elementa doctrinae solidorum. Novi Commentarii Academiae Scientiarum Petropolitanae, 4, 109–140. https://scholarlycommons.pacific.edu/euler-works/230/
Farquhar, A. B., & Farquhar, H. (1891). Economic and industrial delusions: A discourse of the case for protection. Putnam.
Fienberg, S. E. (1971). Randomization and social affairs: The 1970 draft lottery. Science, 171, 255–261.
Finn, J. D. (1967). MULTIVARIANCE: Fortran program for univariate and multivariate analysis of variance and covariance. School of Education, State University of New York at Buffalo.
Fisher, R. A. (1923). Studies in crop variation. II. The manurial response of different potato varieties. The Journal of Agricultural Science, 13(2), 311–320. https://hdl.handle.net/2440/15179
Fisher, R. A. (1925b). Statistical methods for research workers. Oliver & Boyd.
Fisher, R. A. (1925a). Statistical methods for research workers (6th ed.). Oliver & Boyd.
Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2), 179–188. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
Fishkeller, M. A., Friedman, J. H., & Tukey, J. W. (1974). PRIM-9, an interactive multidimensional data display and analysis system. Proceedings of the Pacific ACM Regional Conference.
Flury, B., & Riedwyl, H. (1988). Multivariate statistics: A practical approach. Chapman & Hall.
Fox, J. (1987). Effect displays for generalized linear models. In C. C. Clogg (Ed.), Sociological methodology, 1987 (pp. 347–361). Jossey-Bass.
Fox, J. (2003). Effect displays in R for generalized linear models. Journal of Statistical Software, 8(15), 1–27.
Fox, J. (2016). Applied regression analysis and generalized linear models (Third edition.). SAGE.
Fox, J. (2020). Regression diagnostics (2nd ed.). SAGE Publications, Inc. https://doi.org/10.4135/9781071878651
Fox, J. (2021). A mathematical primer for social statistics (2nd ed.). SAGE Publications, Inc. https://doi.org/10.4135/9781071878835
Fox, J., & Monette, G. (1992). Generalized collinearity diagnostics. Journal of the American Statistical Association, 87(417), 178–183.
Fox, J., & Weisberg, S. (2018a). An R companion to applied regression (Third). SAGE Publications. https://books.google.ca/books?id=uPNrDwAAQBAJ
Fox, J., & Weisberg, S. (2018b). Visualizing fit and lack of fit in complex regression models with predictor effect plots and partial residuals. Journal of Statistical Software, 87(9). https://doi.org/10.18637/jss.v087.i09
Fox, J., Weisberg, S., & Price, B. (2023). Car: Companion to applied regression. https://CRAN.R-project.org/package=car
Fox, J., Weisberg, S., Price, B., Friendly, M., & Hong, J. (2022). Effects: Effect displays for linear, generalized linear, and other models. https://www.r-project.org
Friedman, J., Hastie, T., Tibshirani, R., Narasimhan, B., Tay, K., Simon, N., & Yang, J. (2023). Glmnet: Lasso and elastic-net regularized generalized linear models. https://glmnet.stanford.edu
Friendly, M. (1991). SAS System for statistical graphics (1st ed.). SAS Institute. http://www.sas. com/service/doc/pubcat/uspubcat/ind_files/56143.html
Friendly, M. (1994). Mosaic displays for multi-way contingency tables. Journal of the American Statistical Association, 89, 190–200. http://www.jstor.org/stable/2291215
Friendly, M. (1999). Extending mosaic displays: Marginal, conditional, and partial views of categorical data. Journal of Computational and Graphical Statistics, 8(3), 373–395. http://datavis.ca/papers/drew/drew.pdf
Friendly, M. (2002). Corrgrams: Exploratory displays for correlation matrices. The American Statistician, 56(4), 316–324. https://doi.org/10.1198/000313002533
Friendly, M. (2007). HE plots for multivariate general linear models. Journal of Computational and Graphical Statistics, 16(2), 421–444. https://doi.org/10.1198/106186007X208407
Friendly, M. (2008). The Golden Age of statistical graphics. Statistical Science, 23(4), 502–535. https://doi.org/10.1214/08-STS268
Friendly, M. (2011). Generalized ridge trace plots: Visualizing bias and precision with the genridge R package. SCS Seminar.
Friendly, M. (2013). The generalized ridge trace plot: Visualizing bias and precision. Journal of Computational and Graphical Statistics, 22(1), 50–68. https://doi.org/10.1080/10618600.2012.681237
Friendly, M. (2022). The life and works of andré-michel guerry, revisited. Sociological Spectrum, 42(4-6), 233–259. https://doi.org/10.1080/02732173.2022.2078450
Friendly, M. (2023). vcdExtra: Vcd extensions and additions. https://friendly.github.io/vcdExtra/
Friendly, M. (2024). Genridge: Generalized ridge trace plots for ridge regression. https://github.com/friendly/genridge
Friendly, M., Fox, J., & Chalmers, P. (2024). Matlib: Matrix functions for teaching and learning linear algebra and multivariate statistics. https://github.com/friendly/matlib
Friendly, M., & Kwan, E. (2003). Effect ordering for data displays. Computational Statistics and Data Analysis, 43(4), 509–539. https://doi.org/10.1016/S0167-9473(02)00290-6
Friendly, M., & Kwan, E. (2009). Where’s Waldo: Visualizing collinearity diagnostics. The American Statistician, 63(1), 56–65. https://doi.org/10.1198/tast.2009.0012
Friendly, M., & Meyer, D. (2016). Discrete data analysis with R: Visualization and modeling techniques for categorical and count data. Chapman & Hall/CRC.
Friendly, M., Monette, G., & Fox, J. (2013). Elliptical insights: Understanding statistical methods through elliptical geometry. Statistical Science, 28(1), 1–39. https://doi.org/10.1214/12-STS402
Friendly, M., & Wainer, H. (2021). A history of data visualization and graphic communication. Harvard University Press. https://doi.org/10.4159/9780674259034
Fuller, W. (2006). Measurement error models (2nd ed.). John Wiley & Sons.
Funkhouser, H. G. (1937). Historical development of the graphical representation of statistical data. Osiris, 3(1), 269–405. http://tinyurl.com/32ema9
Gabriel, K. R. (1971). The biplot graphic display of matrices with application to principal components analysis. Biometrics, 58(3), 453–467. https://doi.org/10.2307/2334381
Gabriel, K. R. (1981). Biplot display of multivariate matrices for inspection of data and diagnosis. In V. Barnett (Ed.), Interpreting multivariate data (pp. 147–173). John Wiley; Sons.
Galton, F. (1863). Meteorographica, or methods of mapping the weather. Macmillan. http://www.mugu.com/galton/books/meteorographica/index.htm
Galton, F. (1886). Regression towards mediocrity in hereditary stature. Journal of the Anthropological Institute, 15, 246–263. http://www.jstor.org/cgi-bin/jstor/viewitem/09595295/dm995266/99p0374f/0
Galton, F. (1889). Natural inheritance. Macmillan. http://galton.org/books/natural-inheritance/pdf/galton-nat-inh-1up-clean.pdf
Gannett, H. (1898). Statistical atlas of the united states, eleventh (1890) census. U.S. Government Printing Office.
Gastwirth, J. L., Gel, Y. R., & Miao, W. (2009). The impact of Levene’s test of equality of variances on statistical theory and practice. Statistical Science, 24(3), 343–360. https://doi.org/10.1214/09-STS301
Gelman, A., Hullman, J., & Kennedy, L. (2023). Causal quartets: Different ways to attain the same average treatment effect. http://www.stat.columbia.edu/~gelman/research/unpublished/causal_quartets.pdf
Goeman, J., Meijer, R., Chaturvedi, N., & Lueder, M. (2022). Penalized: L1 (lasso and fused lasso) and L2 (ridge) penalized estimation in GLMs and in the cox model. https://CRAN.R-project.org/package=penalized
Gorman, K. B., Williams, T. D., & Fraser, W. R. (2014). Ecological sexual dimorphism and environmental variability within a community of antarctic penguins (genus pygoscelis). PLoS ONE, 9(3), e90081. https://doi.org/10.1371/journal.pone.0090081
Gower, J. C., & Hand, D. J. (1996). Biplots. Chapman & Hall.
Gower, J. C., Lubbe, S. G., & Roux, N. J. L. (2011). Understanding biplots. Wiley. http://books.google.ca/books?id=66gQCi5JOKYC
Grandjean, M. (2016). A social network analysis of Twitter: Mapping the digital humanities community. Cogent Arts &Amp; Humanities, 3(1), 1171458. https://doi.org/10.1080/23311983.2016.1171458
Graybill, F. A. (1961). An introduction to linear statistical models. McGraw-Hill.
Greenacre, M. (1984). Theory and applications of correspondence analysis. Academic Press.
Greenacre, M. (2010). Biplots in practice. Fundación BBVA. https://books.google.ca/books?id=dv4LrFP7U\_EC
Guerry, A.-M. (1833). Essai sur la statistique morale de la France. Crochard.
Hahsler, M., Buchta, C., & Hornik, K. (2024). Seriation: Infrastructure for ordering objects using seriation. https://github.com/mhahsler/seriation
Haitovsky, Y. (1987). On multivariate ridge regression. Biometrika, 74(3), 563–570. https://doi.org/10.1093/biomet/74.3.563
Harrison, P. (2023). Langevitour: Smooth interactive touring of high dimensions, demonstrated with scRNA-seq data. The R Journal, 15(2), 206–219. https://doi.org/10.32614/RJ-2023-046
Harrison, P. (2024). Langevin tour. https://CRAN.R-project.org/package=langevitour
Hart, C., & Wang, E. (2022). Detourr: Portable and performant tour animations. https://CRAN.R-project.org/package=detourr
Hartigan, J. A. (1975a). Clustering algorithms. John Wiley; Sons.
Hartigan, J. A. (1975b). Printer graphics for clustering. Journal of Statistical Computing and Simulation, 4, 187–213.
Hartley, H. O. (1950). The use of range in analysis of variance. Biometrika, 37(3–4), 271–280. https://doi.org/10.1093/biomet/37.3-4.271
Hartman, L. I. (2016). Schizophrenia and schizoaffective disorder: One condition or two? [PhD dissertation]. York University.
Harwell, M. R., Rubinstein, E. N., Hayes, W. S., & Olds, C. C. (1992). Summarizing monte carlo results in methodological research: The one- and two-factor fixed effects ANOVA cases. Journal of Educational and Behavioral Statistics, 17(4), 315–339. https://doi.org/10.3102/10769986017004315
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference and prediction (2nd ed.). Springer. http://www-stat.stanford.edu/~tibs/ElemStatLearn/
Healy, M. J. R. (1968). Multivariate normal plotting. Journal of the Royal Statistical Society Series C, 17(2), 157–161.
Heinrichs, R. W., Pinnock, F., Muharib, E., Hartman, L., Goldberg, J., & McDermid Vaz, S. (2015). Neurocognitive normality in schizophrenia revisited. Schizophrenia Research: Cognition, 2(4), 227–232. https://doi.org/10.1016/j.scog.2015.09.001
Herschel, J. F. W. (1833). On the investigation of the orbits of revolving double stars: Being a supplement to a paper entitled "micrometrical measures of 364 double stars". Memoirs of the Royal Astronomical Society, 5, 171–222.
Hoaglin, D. C., & Welsch, R. E. (1978). The hat matrix in regression and ANOVA. The American Statistician, 32(1), 17–22. https://doi.org/10.1080/00031305.1978.10479237
Hocking, R. R. (2013). Methods and applications of linear models: Regression and the analysis of variance. Wiley. https://books.google.ca/books?id=iq2J-1iS6HcC
Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12, 55–67.
Hoerl, A. E., Kennard, R. W., & Baldwin, K. F. (1975). Ridge regression: Some simulations. Communications in Statistics, 4(2), 105–123. https://doi.org/10.1080/03610927508827232
Hofmann, H., VanderPlas, S., & Ge, Y. (2022). Ggpcp: Parallel coordinate plots in the ggplot2 framework. https://github.com/heike/ggpcp
Hofstadter, D. R. (1979). Gödel, escher, bach: An eternal golden braid. Basic Books.
Højsgaard, S., Edwards, D., & Lauritzen, S. (2012). Graphical models with R. Springer Science & Business Media.
Horst, A., Hill, A., & Gorman, K. (2022). Palmerpenguins: Palmer archipelago (antarctica) penguin data. https://allisonhorst.github.io/palmerpenguins/
Hotelling, H. (1931). The generalization of Student’s ratio. The Annals of Mathematical Statistics, 2(3), 360–378. https://doi.org/10.1214/aoms/1177732979
Husson, F., Josse, J., Le, S., & Mazet, J. (2024). FactoMineR: Multivariate exploratory data analysis and data mining. http://factominer.free.fr
Husson, F., Le, S., & Pagès, J. (2017). Exploratory multivariate analysis by example using r. Chapman & Hall. https://doi.org/10.1201/b21874
IBM. (1965). Proceedings of the IBM scientific computing symposium on statistics: Oct 21-23, 1963 (L. Robinson, Ed.). IBM. https://www.amazon.com/Proceedings-Scientific-Computing-Symposium-Statistics/dp/B000GL5RLU
Inselberg, A. (1985). The plane with parallel coordinates. The Visual Computer, 1, 69–91.
Isvoranu, A.-M., Epskamp, S., Waldorp, L. J., & Borsboom, D. (2022). Network psychometrics with r: A guide for behavioral and social scientists. Routledge. https://doi.org/10.4324/9781003111238
Kassambara, A., & Mundt, F. (2020). Factoextra: Extract and visualize the results of multivariate data analyses. http://www.sthda.com/english/rpkgs/factoextra
Kastellec, J. P., & Leoni, E. L. (2007). Using graphs instead of tables in political science. Perspectives on Politics, 5(04), 755–771. https://doi.org/10.1017/S1537592707072209
Krijthe, J. (2023). Rtsne: T-distributed stochastic neighbor embedding using a barnes-hut implementation. https://github.com/jkrijthe/Rtsne
Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29(1), 1–27. https://doi.org/10.1007/bf02289565
Kwan, E., Lu, I. R. R., & Friendly, M. (2009). Tableplot: A new tool for assessing precise predictions. Zeitschrift für Psychologie / Journal of Psychology, 217(1), 38–48. https://doi.org/10.1027/0044-3409.217.1.38
Larmarange, J. (2024). Ggstats: Extension to ggplot2 for plotting stats. https://larmarange.github.io/ggstats/
Larsen, W. A., & McCleary, S. J. (1972). The use of partial residual plots in regression analysis. Technometrics, 14, 781–790.
Lauritzen, S. L. (1996). Graphical models. Oxford University Press.
Lawless, J. F., & Wang, P. (1976). A simulation study of ridge and other regression estimators. Communications in Statistics, 5, 307–323.
Lee, E.-K., & Cook, D. (2009). A projection pursuit index for large p small n data. Statistics and Computing, 20(3), 381–392. https://doi.org/10.1007/s11222-009-9131-1
Lee, S. (2021). Liminal: Multivariate data visualization with tours and embeddings. https://CRAN.R-project.org/package=liminal
Levene, H. (1960). Robust tests for equality of variances. In I. Olkin, S. G. Ghurye, W. Hoeffding, W. G. Madow, & H. B. Mann (Eds.), Contributions to probability and statistics: Essays in honor of Harold Hotelling (pp. 278–292). Stanford University Press.
Lix, J. M., L. M. Keselman, & Keselman, H. J. (1996). Consequences of assumption violations revisited: A quantitative review of alternatives to the one-way analysis of variance F test. Review of Educational Research, 66(4), 579–619. https://doi.org/10.3102/00346543066004579
Longley, J. W. (1967). An appraisal of least squares programs for the electronic computer from the point of view of the user. Journal of the American Statistical Association, 62, 819–841. https://doi.org/https://www.tandfonline.com/doi/abs/10.1080/01621459.1967.10500896
Lüdecke, D. (2024). Ggeffects: Create tidy data frames of marginal effects for ggplot from model outputs. https://strengejacke.github.io/ggeffects/
Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P., & Makowski, D. (2021). performance: An R package for assessment, comparison and testing of statistical models. Journal of Open Source Software, 6(60), 3139. https://doi.org/10.21105/joss.03139
Lüdecke, D., Ben-Shachar, M. S., Patil, I., Wiernik, B. M., & Makowski, D. (2022). Easystats: Framework for easy statistical modeling, visualization, and reporting. In CRAN. https://easystats.github.io/easystats/
Maaten, L. van der, & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9, 2579–2605. http://www.jmlr.org/papers/v9/vandermaaten08a.html
Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57(3), 519–530. https://doi.org/http://dx.doi.org/10.2307/2334770
Mardia, K. V. (1974). Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies. Sankhya: The Indian Journal of Statistics, Series B, 36(2), 115–128. http://www.jstor.org/stable/25051892
Marquardt, D. W. (1970). Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics, 12, 591–612.
Marquardt, D. W., & Snee, R. D. (1975). Ridge regression in practice. The American Statistician, 29(1), 3–20. https://doi.org/10.1080/00031305.1975.10479105
Martí, R., & Laguna, M. (2003). Heuristics and meta-heuristics for 2-layer straight line crossing minimization. Discrete Applied Mathematics, 127(3), 665–678.
Matejka, J., & Fitzmaurice, G. (2017, May). Same stats, different graphs. Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3025453.3025912
Matloff, N. (2011). The art of R programming: A tour of statistical software design. No Starch Press.
McDonald, G. C. (2009). Ridge regression. Wiley Interdisciplinary Reviews: Computational Statistics, 1(1), 93–100. https://doi.org/10.1002/wics.14
McGowan, L. D., Gerke, T., & Barrett, M. (2023). Causal inference is not just a statistics problem. Journal of Statistics and Data Science Education, 1–9. https://doi.org/10.1080/26939169.2023.2276446
Meyer, D., Zeileis, A., Hornik, K., & Friendly, M. (2024). Vcd: Visualizing categorical data. https://CRAN.R-project.org/package=vcd
Meyers, L. S., Gamst, G., & Guarino, A. J. (2006). Applied multivariate research: Design and interpretation. SAGE Publications.
Monette, G. (1990). Geometry of multiple regression and interactive 3-D graphics. In J. Fox & S. Long (Eds.), Modern methods of data analysis (pp. 209–256). SAGE Publications.
O’Brien, P. C. (1992). Robust procedures for testing equality of covariance matrices. Biometrics, 48(3), 819–827. http://www.jstor.org/stable/2532347
Oksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Solymos, P., Stevens, M. H. H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., … Weedon, J. (2024). Vegan: Community ecology package. https://github.com/vegandevs/vegan
Otto, J., & Kahle, D. (2023). Ggdensity: Interpretable bivariate density visualization with ggplot2. https://jamesotto852.github.io/ggdensity/
Pearson, K. (1896). Contributions to the mathematical theory of evolution—III, regression, heredity and panmixia. Philosophical Transactions of the Royal Society of London, 187, 253–318.
Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 6(2), 559–572.
Pearson, K. (1903). I. Mathematical contributions to the theory of evolution. —XI. On the influence of natural selection on the variability and correlation of organs. Philosophical Transactions of the Royal Society of London, 200(321–330), 1–66. https://doi.org/10.1098/rsta.1903.0001
Pedersen, T. L., & Robinson, D. (2024). Gganimate: A grammar of animated graphics. https://gganimate.com
Pineo, P. O., & Porter, J. (1967). Occupational prestige in canada*. Canadian Review of Sociology, 4(1), 24–40. https://doi.org/https://doi.org/10.1111/j.1755-618X.1967.tb00472.x
Pineo, P. O., & Porter, J. (2008). Occupational prestige in canada. Canadian Review of Sociology, 4(1), 24–40. https://doi.org/10.1111/j.1755-618x.1967.tb00472.x
Playfair, W. (1786). Commercial and political atlas: Representing, by copper-plate charts, the progress of the commerce, revenues, expenditure, and debts of england, during the whole of the eighteenth century. Debrett; Robinson;; Sewell. http://ucpj.uchicago.edu/Isis/journal/demo/v000n000/000000/000000.fg4.html
Playfair, W. (1801). Statistical breviary; shewing, on a principle entirely new, the resources of every state and kingdom in Europe. Wallis.
Reaven, G. M., & Miller, R. G. (1968). Study of the relationship between glucose and insulin responses to an oral glucose load in man. Diabetes, 17(9), 560–569. https://doi.org/10.2337/diab.17.9.560
Reaven, G. M., & Miller, R. G. (1979). An attempt to define the nature of chemical diabetes using a multidimensional analysis. Diabetologia, 16, 17–24.
Robinaugh, D. J., Hoekstra, R. H. A., Toner, E. R., & Borsboom, D. (2019). The network approach to psychopathology: A review of the literature 2008–2018 and an agenda for future research. Psychological Medicine, 50(3), 353–366. https://doi.org/10.1017/s0033291719003404
Rogan, J. C., & Keselman, H. J. (1977). Is the ANOVA f-test robust to variance heterogeneity when sample sizes are equal?: An investigation via a coefficient of variation. American Educational Research Journal, 14(4), 493–498. https://doi.org/10.3102/00028312014004493
Sarkar, D. (2024). Lattice: Trellis graphics for r. https://lattice.r-forge.r-project.org/
Scheffé, H. A. (1960). The analysis of variance. Wiley.
Schloerke, B., Cook, D., Larmarange, J., Briatte, F., Marbach, M., Thoen, E., Elberg, A., & Crowley, J. (2024). GGally: Extension to ggplot2. https://ggobi.github.io/ggally/
Scott, D. W. (1992). Multivariate density estimation: Theory, practice, and visualization. Wiley.
Searle, S. R., Speed, F. M., & Milliken, G. A. (1980). Population marginal means in the linear model: An alternative to least squares means. The American Statistician, 34(4), 216–221.
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3–4), 591–611. https://doi.org/10.1093/biomet/52.3-4.591
Shepard, R. N. (1962a). The analysis of proximities: Multidimensional scaling with an unknown distance function. i. Psychometrika, 27(2), 125–140. https://doi.org/10.1007/bf02289630
Shepard, R. N. (1962b). The analysis of proximities: Multidimensional scaling with an unknown distance function. II. Psychometrika, 27(3), 219–246. https://doi.org/10.1007/bf02289621
Shepard, R. N., Romney, A. K., Nerlove, S. B., & Board, M. S. S. (1972a). Multidimensional scaling; theory and applications in the behavioral sciences: Vols. II. Applications. Seminar Press. https://books.google.ca/books?id=PpFAAQAAIAAJ
Shepard, R. N., Romney, A. K., Nerlove, S. B., & Board, M. S. S. (1972b). Multidimensional scaling: Theory and applications in the behavioral sciences: Vols. I. Theory. Seminar Press. https://books.google.ca/books?id=pJRAAQAAIAAJ
Shoben, E. J. (1983). Applications of multidimensional scaling in cognitive psychology. Applied Psychological Measurement, 7(4), 473–490. https://doi.org/10.1177/014662168300700406
Silverman, B. W. (1986). Density estimation for statistics and data analysis. Chapman & Hall.
Simpson, E. H. (1951). The interpretation of interaction in contingency tables. Journal of the Royal Statistical Society, Series B, 30, 238–241.
Swayne, D. F., Cook, D., & Buja, A. (1998). XGobi: Interactive dynamic data visualization in the x window system. Journal of Computational and Graphical Statistics, 7(1), 113–130. https://doi.org/10.1080/10618600.1998.10474764
Swayne, D. F., Lang, D. T., Buja, A., & Cook, D. (2003). GGobi: Evolving from XGobi into an extensible framework for interactive data visualization. Computational Statistics &Amp; Data Analysis, 43(4), 423–444. https://doi.org/10.1016/s0167-9473(02)00286-4
Teetor, P. (2011). R cookbook. O’Reilly Media.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B: Methodological, 58, 267–288.
Tiku, M. L., & Balakrishnan, N. (1984). Testing equality of population variances the robust way. Communications in Statistics - Theory and Methods, 13(17), 2143–2159. https://doi.org/10.1080/03610928408828818
Timm, N. H. (1975). Multivariate analysis with applications in education and psychology. Wadsworth (Brooks/Cole).
Torgerson, W. S. (1952). Multidimensional scaling: I. Theory and method. Psychometrika, 17(4), 401–419. https://doi.org/10.1007/bf02288916
VanderPlas, S., Ge, Y., Unwin, A., & Hofmann, H. (2023). Penguins go parallel: A grammar of graphics framework for generalized parallel coordinate plots. Journal of Computational and Graphical Statistics, 1–16. https://doi.org/10.1080/10618600.2023.2195462
Velleman, P. F., & Welsh, R. E. (1981). Efficient computing of regression diagnostics. The American Statistician, 35(4), 234–242.
Vinod, H. D. (1978). A survey of ridge regression and related techniques for improvements over ordinary least squares. The Review of Economics and Statistics, 60(1), 121–131. http://www.jstor.org/stable/1924340
Waddell, A., & Oldford, R. W. (2023). Loon: Interactive statistical data visualization. https://CRAN.R-project.org/package=loon
Warne, F. T. (2014). A primer on multivariate analysis of variance(MANOVA) for behavioral scientists. Practical Assessment, Research & Evaluation, 19(1). https://scholarworks.umass.edu/pare/vol19/iss1/17/
Wegman, E. J. (1990). Hyperdimensional data analysis using parallel coordinates. Journal of the American Statistical Association, 85(411), 664–675.
Wei, T., & Simko, V. (2024). Corrplot: Visualization of a correlation matrix. https://github.com/taiyun/corrplot
Welch, B. L. (1947). The generalization of "student’s" problem when several different population varlances are involved. Biometrika, 34(1–2), 28–35. https://doi.org/10.1093/biomet/34.1-2.28
West, D. B. (2001). Introduction to graph theory. Prentice hall.
Whittaker, J. (1990). Graphical models in applied multivariate statistics. John Wiley; Sons.
Wickham, H. (2014). Advanced R. Chapman and Hall/CRC.
Wickham, H., & Cook, D. (2024). Tourr: Tour methods for multivariate data visualisation. https://github.com/ggobi/tourr
Wickham, H., Cook, D., Hofmann, H., & Buja, A. (2011). Tourr: An R package for exploring multivariate data with projections. Journal of Statistical Software, 40(2). https://doi.org/10.18637/jss.v040.i02
Wilkinson, G. N., & Rogers, C. E. (1973). Symbolic description of factorial models for analysis of variance. Applied Statistics, 22(3), 392. https://doi.org/10.2307/2346786
Winer, B. J. (1962). Statistical principles in experimental design. McGraw-Hill.
Wood, S. N. (2006). Generalized additive models: An introduction with r. Chapman; Hall/CRC Press.
Wright, K. (2021). Corrgram: Plot a correlogram. https://kwstat.github.io/corrgram/
Xie, Y. (2021). Animation: A gallery of animations in statistics and utilities to create animations. https://yihui.org/animation/
Xu, Z., & Oldford, R. W. (2021). Loon.tour: Tour in ’loon’. https://cran.r-project.org/package=loon.tourr
Zhang, J., & Boos, D. D. (1992). Bootstrap critical values for testing homogeneity of covariance matrices. Journal of the American Statistical Association, 87(418), 425–429. http://www.jstor.org/stable/2290273

Package used